|x+3/1,5|- 5/6 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(|5x-3|=|7-x|\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=7-x\\5x-3=x-7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x=10\\4x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}\)
Vậy...
2) \(2.|3x-1|-3x=7\)
\(\Leftrightarrow2.|3x-1|=7+3x\)
\(\Leftrightarrow\orbr{\begin{cases}2.\left(3x-1\right)=7+3x\\2.\left(3x-1\right)=-7-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x-2=7+3x\\6x-2=-7-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=9\\9x=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{9}\end{cases}}\)
Vậy...
a, \(\Leftrightarrow2x^2=72\)
\(\Leftrightarrow x^2=36\)
\(\Leftrightarrow x=\pm6\)
Vậy ...
\(b,\Leftrightarrow\dfrac{3}{5}x-0,75=2\dfrac{4}{5}.\dfrac{3}{7}=\dfrac{6}{5}\)
\(\Leftrightarrow\dfrac{3}{5}x=\dfrac{6}{5}+0,75=\dfrac{39}{20}\)
\(\Leftrightarrow x=\dfrac{39}{20}:\dfrac{3}{5}=\dfrac{13}{4}\)
Vậy ...
\(c,\Leftrightarrow2x=1\dfrac{5}{6}.\dfrac{6}{11}-\dfrac{3}{10}=\dfrac{7}{10}\)
\(\Leftrightarrow x=\dfrac{7}{10}:2=\dfrac{7}{20}\)
Vậy ...
\(d,\Leftrightarrow\dfrac{1}{x-7\dfrac{1}{3}}=1.5:2\dfrac{1}{4}=\dfrac{2}{3}\)
\(\Leftrightarrow x-7\dfrac{1}{3}=\dfrac{3}{2}\)
\(\Leftrightarrow x=\dfrac{3}{2}+7\dfrac{1}{3}=\dfrac{53}{6}\)
Vậy ...
a) 2x2 - 72 = 0
\(\Rightarrow\) 2x2 = 72
\(\Rightarrow\) x2 = 36 = 62 = (- 6)2
\(\Rightarrow\) x = 6 hoặc x = - 6
Vậy x = 6 hoặc x = - 6
b) (\(\dfrac{3}{5}\)x - 0,75) : \(\dfrac{3}{7}\) = \(2\dfrac{4}{5}\)
\(\Rightarrow\) (\(\dfrac{3}{5}\)x - 0,75) : \(\dfrac{3}{7}\) = \(\dfrac{14}{5}\)
\(\Rightarrow\) \(\dfrac{3}{5}\)x - \(\dfrac{3}{4}\) = \(\dfrac{6}{5}\)
\(\Rightarrow\) \(\dfrac{3}{5}\)x = \(\dfrac{39}{20}\)
\(\Rightarrow\) x = \(\dfrac{13}{4}\)
Vậy x = \(\dfrac{13}{4}\)
Ta có: \(\left(3x-1.5\right)\left(\dfrac{-1}{2}x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1.5=0\\\dfrac{-1}{2}x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1.5\\\dfrac{-1}{2}x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=10\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{1}{2};10\right\}\)
Giải:
(3.x-1.5).(-1/2.x+5)=0
=> 3x-1.5=0 hoặc -1/2x+5=0
x=1/2 hoặc x=10
Vậy x ∈{1/2;10}
Chúc bạn học tốt!
a)\(f\left(1\right)=2.1^2+5.1-3=2+5-3=4\)
\(f\left(0\right)=0+0-3=-3\)
\(f\left(1,5\right)=2.\left(1,5\right)^2-5.1,5-3=4,5-7,5-3=-6\)
\(\left(x-1,5\right)^6+2.\left(1,5-x\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1,5=0\\1,5-x=0\end{matrix}\right.\)
\(\Leftrightarrow x=1,5\)
Vậy : \(x=1,5\)
a) Ta có: \(2-x=2\left(x-2\right)^3\)
\(\Leftrightarrow-\left(x-2\right)-2\left(x-2\right)^3=0\)
\(\Leftrightarrow\left(x-2\right)\left[1+2\left(x-2\right)^2\right]=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
b) Ta có: \(8x^3-72x=0\)
\(\Leftrightarrow8x\left(x^2-9\right)=0\)
\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy: S={0;3;-3}
c) Ta có: \(\left(x-1.5\right)^6+2\left(1.5-x\right)^2=0\)
\(\Leftrightarrow\left(x-1.5\right)^2\left[\left(x-1.5\right)^4+2\right]=0\)
\(\Leftrightarrow x-1.5=0\)
hay x=1,5
d) Ta có: \(2x^3+3x^2+3+2x=0\)
\(\Leftrightarrow x^2\left(2x+3\right)+\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\)
\(\Leftrightarrow2x=-3\)
hay \(x=-\dfrac{3}{2}\)
e) Ta có: \(x^2\left(x+1\right)-x\left(x+1\right)+x\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x-1\right)+x\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-2\end{matrix}\right.\)
Vậy: S={0;1;-2}
f) Ta có: \(x^3-4x-14x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)-14x\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x-12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=12\end{matrix}\right.\)
Vậy: S={0;2;12}
\(\left|x+\frac{3}{1,5}\right|=\frac{5}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=\frac{5}{6}\\x+2=\frac{-5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-7}{6}\\x=\frac{-17}{6}\end{cases}}\)