K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020
https://i.imgur.com/aJeNGvv.jpg
30 tháng 3 2020
https://i.imgur.com/Yj5IyiZ.jpg
14 tháng 4 2022

Bài 1.

\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)

\(x_0^2+y_0^2=9m\)

\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)

\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)

\(\Leftrightarrow2m^2-7m+5=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )

NV
2 tháng 3 2021

a. Bạn tự giải

b. \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi \(m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{m}{m+2}\\y=\dfrac{m-1}{m+2}\end{matrix}\right.\) 

\(x+y^2=1\Leftrightarrow\dfrac{m}{m+2}+\left(\dfrac{m-1}{m+2}\right)^2=1\)

\(\Leftrightarrow m^2-4m-3=0\)

\(\Leftrightarrow...\)

2 tháng 3 2021

anh ơi :^^

3 tháng 3 2022

(x:y)=(2;3)

\(\Leftrightarrow\left\{{}\begin{matrix}2-3m=0\\2m-3=m+1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2-3m=0\\m-4=0\end{matrix}\right.\)

\(\Leftrightarrow2-3m=m-4\)

\(\Leftrightarrow4m=6\)

\(\Leftrightarrow m=\dfrac{3}{2}\)

Thay x=2 và y=3 vào HPT, ta được:

\(\left\{{}\begin{matrix}2-3m=0\\2m-3=m+1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{4}\)

=>\(m^2\ne4\)

=>\(m\notin\left\{2;-2\right\}\)

Ta có: \(\left\{{}\begin{matrix}x+my=1\\mx+4y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1-my\\m\left(1-my\right)+4y=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1-my\\m-m^2\cdot y+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-my\\y\left(-m^2+4\right)=2-m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1-my\\y=\dfrac{-\left(m-2\right)}{-\left(m^2-4\right)}=\dfrac{1}{m+2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{1}{m+2}\\x=1-\dfrac{m}{m+2}=\dfrac{m+2-m}{m+2}=\dfrac{2}{m+2}\end{matrix}\right.\)

x+y>-5

=>\(\dfrac{2}{m+2}+\dfrac{1}{m+2}>-5\)

=>\(\dfrac{3}{m+2}+5>0\)

=>\(\dfrac{3+5m+10}{m+2}>0\)

=>\(\dfrac{5m+13}{m+2}>0\)

TH1: \(\left\{{}\begin{matrix}5m+13>0\\m+2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-\dfrac{13}{5}\\m>-2\end{matrix}\right.\)

=>\(m>-2\)

TH2: \(\left\{{}\begin{matrix}5m+13< 0\\m+2< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< -\dfrac{13}{5}\\m< -2\end{matrix}\right.\)

=>\(m< -\dfrac{13}{5}\)

Vậy: \(\left[{}\begin{matrix}m< -\dfrac{13}{5}\\\left\{{}\begin{matrix}m>-2\\m\ne2\end{matrix}\right.\end{matrix}\right.\)

3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r

=>3x+2y=4 và 4x-2y=2m

=>7x=2m+4 và 2x-y=m

=>x=2/7m+4/7 và y=2x-m=4/7m+8/7-m=-3/7m+8/7

x<1; y<1

=>2/7m+4/7<1 và -3/7m+8/7<1

=>2/7m<3/7 và -3/7m<-1/7

=>m<3/2 và m>1/3

11 tháng 4 2017

1)

\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)

trừ 2 vế của pt cho nhau ta tìm được

\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)

để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)