chứng tỏ: A=3^1+3^2+ 3^3+....n^60 chia hết cho 3
Tớ đang cần gấp!!!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260)
= (2 + 22 + 23 + 24) + 24.(2 + 22 + 23 + 24) + ... + 256.(2 + 22 + 23 + 24)
= 30 + 24.30 + ... + 256.30
= 30."(1 + 24 + ... + 256)
= 5.6.(1 + 24 + ... + 256) \(⋮\)5
=> \(A⋮5\left(\text{đpcm}\right)\)
Ta có : A = 2 + 22 + 23 + ... + 260
2A = 22 + 23 + ... + 260 + 261
2A - A = 261 - 2
A = 261 - 2
Vì 261 - 2 = 24x15+1 - 2 = ( 24)15 x 2 - 2 = 1615 x 2 - 2 = ....6 x 2 - 2 = ....2 - 2 = ....0
Mà ....0 chia hết cho 5
261 - 2 chia hết cho 5
2 + 22 + 23 + ... + 260 chia hết cho 5 ( đpcm )
Vậy A chia hết cho 5
a)A=(2+22)+(23+24)+...(29+210)
A=2(2+1)+23(1+2)+....+29(2+1)
A=3(2+23+25+27+29)
Vay A chia het cho 3(khi chia 3 duoc 2+23+25+27+29du 0)
b)A=(2+22+23+24+25)+(26+27+28+29+210)
A=2(1+2+22+23+24)+26(1+2+22+23+24)
A=31(2+26) luon chia het cho 31 :))
\(7^{n+4}-7^n\)
\(\Rightarrow7^n\cdot7^4-7^n\)
\(\Rightarrow7^n\cdot\left(7^4-1\right)\)
\(\Rightarrow7^n\cdot\left(2401-1\right)\)
\(\Rightarrow7^n\cdot2400\)
\(\Rightarrow7^n\cdot30\cdot80⋮30\left(đpcm\right)\)
\(3^{n+2}+3^n\)
\(\Rightarrow3^n\cdot3^2+3^n\)
\(\Rightarrow3^n\cdot\left(3^2+1\right)\)
\(\Rightarrow3^n\cdot\left(9+1\right)\)
\(\Rightarrow3^n\cdot10⋮10\left(đpcm\right)\)
\(3^{n+2}+3^n=3^n.3^2+3^n=3^n.9+3^n=3^n\left(9+1\right)=10.3^n⋮10\)
a,S=1+3+32+...+360
3S=3+32+33+...+361
3S-S=(3+32+33+...+361)-(1+3+32+...+360)
2S = 361 - 1
b,2S+1=361-1+1=361 = 3x-3
=>x-3=61=>x=64
c, S=1+3+32+...+360
=(1+3)+(32+33)+...+(359+360)
=4+32(1+3)+...+359(1+3)
=4+32.4+...+359.4
=4(1+32+...+359) chia hết cho 4
S=1+3+32+...+360
=(1+3+32)+....+(358+359+360)
=13+...+358(1+3+32)
=13+...+358.13
=13(1+...+358)