Tìm các số nguyên x,y thuộc Z
3x+4y-xy=15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x+4y-xy=15
=> y(4-x) + 3x = 15
=> y(4-x) + 3x - 12 = 15 - 12
=> y(4-x) + 3x - 3.4 = 3
=> y.(4-x) + 3(x-4) = 3
=> (4-x)(y-3) = 3
=> 4-x và y-3 thuộc Ư(3) = {-3;-1;1;3}
ta có bảng sau:
4-x | 1 | 3 | -1 | -3 |
y-3 | 3 | 1 | -3 | -1 |
x | 3 | 1 | 5 | 7 |
y | 6 | 4 | 0 | 2 |
vậy ta có các cặp số x;y là
x = 5 ; y = 0
x = 3 ; y = 6
x = 1 ; y = 4
x = 7 ; y = 2
=> y.(4-x) + 3x = 15
=> y. (4-x) - 3.(4-x) = (4-x).(y-3)
=15-12
=3
=> 4-x và y-3 là ước của 3 thuộc { -3;3;1;-1 }
Ta có bảng sau
4-x | y-3 | x | y |
-3 | -1 | 7 | 2 |
-1 | -3 | 5 | 0 |
1 | 3 | 3 | 6 |
3 | 1 | 1 | 4 |
Vậy có các cặp .....
Mk thấy có mấy bn làm như vậy đó
3x+4y-xy=15
=>y(4-x)+3x=15
=>y(4-x)-3(4-x)(y-3)=15-12=3
=>4-x và y-3 là Ư(3)={-3;-1;1;3}
nếu 4-x=-3 thì x=7
nếu y-3=-1 thì y=2
các trường hợp sau bn tự giari^_^
a, n+3 là ước của n^2+3n-13
=>n^2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
mà n(n+3) chia hết cho n+3 nên 13 chia hết cho n+3
=>n+3 thuộc Ư(13)
=> n+3 thuộc{+-1;+-13}
ta có bảng:(bn tự kẻ bảng)
n+3: -1 1 -13 13
n: -4 -2 -16 10
vậy n thuộc{-16;-4;-2;10}
tìm x,y
a, xy+12=x+y
=>xy-x-y=-12
=>x(y-1)-(y-1)=-11
=>(x-1)(y-1)=-11
ta có bảng:
x-1: -1 11 -11 1
x: 0 12 -10 2
y-1: 11 -1 1 -11
y: 12 0 2 -10
vậy (x;y) thuộc{(0;12);(12;0);(-10;2);(2;-10)
b, 3x+4y-xy=16
=>3x-xy+4y=16
=>x(3-y)+4y-12=4
=>x(3-y)+4(y-3)=4
=>x(3-y)-4(3-y)=4
=>(x-4)(3-y)=4
ta có bảng:
x-4: -1 -2 -4 1 2 4
.....(bn làm tương tự như trên nhé)
rút gọn thừa số chung
( 4 - x ) y + 3x = 15
đơn giản biểu thức
( 4 - x ) y + 3x - 15 = 0
giải phương trình
- ( ( x - 4 ) y -3x + 15 ) = 0
giải phương trình
( x - 4 ) y - 3x + 15 = 0
rút gọn thừa số chung
x - 4 = 0
đơn giản biểu thức
x = 4
rút gọn thừa số chung
y - 3 = 0
đơn giản biểu thức
y = 3
a) \(x\left(y-7\right)+y-12=0\left(x;y\inℤ\right)\)
\(\Rightarrow x\left(y-7\right)+y-7-5=0\)
\(\Rightarrow\left(x+1\right)\left(y-7\right)=5\)
\(\Rightarrow\left(x+1\right);\left(y-7\right)\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(-2;2\right);\left(0;12\right);\left(-6;6\right);\left(4;8\right)\right\}\)
b) xy - 6x - 4y + 13 = 0
x(y - 6) - 4y + 24 - 11 = 0
x(y - 6) - 4(y - 6) = 11
(y - 6)(x - 4) = 11
TH1: x - 4 = 1 và y - 6 = 11
*) x - 4 = 1
x = 5
*) y - 6 = 11
y = 17
TH2: x - 4 = -1 và y - 6 = -11
*) x - 4 = -1
x = 3
*) y - 6 = -11
y = -5
TH3: x - 4 = 11 và y - 6 = 1
*) x - 4 = 11
x = 15
*) y - 6 = 1
y = 7
TH4: x - 4 = -11 và y - 6 = -1
*) x - 4 = -11
x = -7
*) y - 6 = -1
y = 5
Vậy ta có các cặp giá trị (x; y) sau:
(-7; 5); (15; 7); (3; -5); (5; 17)
a, xy+5x+y=4
\(\Rightarrow\) xy+5x+y+5=4+5=9
\(\Rightarrow x\left(y+5\right)+\left(y+5\right)=9\)
\(\Rightarrow\left(y+5\right)\left(x+1\right)=9\)
Do x,y nguyên nên ta có bảng sau
x+1 | -9 | -3 | -1 | 1 | 3 | 9 |
y+5 | -1 | -3 | -9 | 9 | 3 | 1 |
x | -10 | -6 | -2 | 0 | 2 | 8 |
y | 4 | -8 | -14 | 4 | -2 | -4 |
Điều kiện x, y nguyên | thỏa mãn | thỏa mãn | thỏa mãn | thỏa mãn | thỏa mãn | thỏa mãn |
Vậy các cặp số nguyên (x;y) thỏa mãn đề bài là ( -10 ;4);(-6;-8);(-2;-14)(0;4);(2;-2);(8;-4)
Câu b tương tự nhé
Mà thôi đang rảnh t giúp luôn câu b nhé:
xy-3x+4y=15
\(\Rightarrow xy-3x+4y-3.4=15-12\)
\(\Rightarrow\left(xy+4y\right)-\left(3x+3.4\right)=3\)
\(\Rightarrow y\left(x+4\right)-3\left(x+4\right)=3\)
\(\Rightarrow\left(y-3\right)\left(x+4\right)=3\)
Đến đay bạn tự làm nốt nhé
Học tốt
<=> \(x\left(3-y\right)=15-4y\)
<=> \(x\left(3-y\right)=4\left(3-y\right)+3\)
<=> \(\left(x-4\right)\left(3-y\right)=3\)
vi \(x,y\inℤ\Rightarrow\left(x-4\right)\left(3-y\right)=1.3=3.1=-1.-3=-3.-1\)
tu do suy ra duoc {x;y}={5;0},{7;2},{3;6},{1;4}
chuc ban hoc tot