K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 1 2021

ĐKXĐ: \(x\ge0\)

\(\sqrt{x}+4=m\sqrt{x}+5m\)

\(\Leftrightarrow\left(m-1\right)\sqrt{x}=4-5m\)

- Với \(m=1\) không tồn tại x

- Với \(m\ne1\Rightarrow\sqrt{x}=\dfrac{4-5m}{m-1}\)

Do \(\sqrt{x}\ge0\Rightarrow\dfrac{4-5m}{m-1}\ge0\Rightarrow\dfrac{4}{5}\le m< 1\)

NV
23 tháng 9 2019

ĐKXĐ: \(x\ge0;x\ne25\)

\(B=\left(\frac{15-\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}+\frac{2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right)\left(\frac{\sqrt{x}-5}{\sqrt{x}+3}\right)\)

\(=\left(\frac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right)\left(\frac{\sqrt{x}-5}{\sqrt{x}+3}\right)\)

\(=\frac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}+3}\)

Ta có \(A+B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{1}{\sqrt{x}+3}=\frac{2\sqrt{x}+1}{\sqrt{x}+3}=2-\frac{5}{\sqrt{x}+3}\)

Để A+B nguyên \(\Rightarrow5⋮\left(\sqrt{x}+3\right)\Rightarrow\sqrt{x}+3=Ư\left(5\right)\)

\(\sqrt{x}+3\ge3\)

\(\Rightarrow\sqrt{x}+3=5\Rightarrow x=4\)

Bài 2:

Để hàm số đã cho là bậc nhất \(\Leftrightarrow2m-5\ne0\Rightarrow m\ne\frac{5}{2}\)

Để hàm số đã cho đồng biến \(\Leftrightarrow2m-5>0\Rightarrow m>\frac{5}{2}\)

Để hàm số đã cho nghịch biến \(\Leftrightarrow2m-5< 0\Rightarrow m< \frac{5}{2}\)

NV
25 tháng 5 2020

- Với \(x=0\) BPT luôn đúng

- Với \(x>0\)

\(\Leftrightarrow x+2\left(3-m\right)+\frac{1}{x}-4\sqrt{2\left(x+\frac{1}{x}\right)}\ge0\)

\(\Leftrightarrow x+\frac{1}{x}-4\sqrt{2\left(x+\frac{1}{x}\right)}+6\ge2m\)

Đặt \(\sqrt{2\left(x+\frac{1}{x}\right)}=t\) ; do \(x+\frac{1}{x}\ge2\Rightarrow t\ge2\)

BPT tương đương: \(\frac{t^2}{2}-4t+6\ge2m\)

\(\Leftrightarrow f\left(t\right)=t^2-8m+12\ge4m\)

Để BPT đúng với mọi \(t\ge2\)

\(\Leftrightarrow4m\le\min\limits_{t\ge2}f\left(t\right)\)

Xét \(f\left(t\right)\) khi \(t\ge2\) ; \(-\frac{b}{2a}=4>2\) ; \(a=1>0\)

\(\Rightarrow f\left(t\right)_{min}=f\left(4\right)=-4\)

\(\Rightarrow4m\le-4\Rightarrow m\le-1\)

NV
5 tháng 5 2019

Với \(x>1\) đặt \(\sqrt[3]{2x-1}=a>1\Rightarrow x=\frac{a^3+1}{2}\) pt trở thành:

\(\frac{a^3+1}{2}+m-1=ma\)

\(\Leftrightarrow a^3-1+2m=2ma\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+a+1\right)=2m\left(a-1\right)\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+a+1-2m\right)=0\)

\(\Leftrightarrow f\left(a\right)=a^2+a+1-2m=0\) (do \(a>1\Rightarrow a-1>0\)) (1)

Ta cần tìm m để pt (1) có ít nhất 1 nghiệm \(a>1\)

\(\Delta=1-4\left(1-2m\right)=8m-3\ge0\Rightarrow m\ge\frac{3}{8}\)

- Nếu \(m=\frac{3}{8}\Rightarrow a=-\frac{1}{2}< 1\left(l\right)\)

- Với \(m>\frac{3}{8}\) pt có 2 nghiệm pb, xét trường hợp cả 2 nghiệm đều ko lớn hơn 1, nghĩa là \(a_1< a_2\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(1\right)\ge0\\\frac{a_1+a_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3-2m\ge0\\-\frac{1}{2}< 1\end{matrix}\right.\) \(\Rightarrow m\le\frac{3}{2}\)

Vậy để pt có ít nhất 1 nghiệm \(a>1\) thì \(m>\frac{3}{2}\)

b: \(\text{Δ}=\left(2m+3\right)^2-4\left(4m+2\right)\)

\(=4m^2+12m+9-16m-8\)

\(=4m^2-4m+1=\left(2m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

Theo đề, ta có:

\(\left\{{}\begin{matrix}2x_1-5x_2=6\\x_1+x_2=2m+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1-5x_2=6\\2x_1+2x_2=4m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7x_2=-4m\\2x_1=5x_2+6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\2x_1=\dfrac{20}{7}m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\x_1=\dfrac{10}{7}m+3\end{matrix}\right.\)

Theo đề, ta có: \(x_1x_2=4m+2\)

\(\Rightarrow4m+2=\dfrac{40}{49}m^2+\dfrac{12}{7}m\)

\(\Leftrightarrow m^2\cdot\dfrac{40}{49}-\dfrac{16}{7}m-2=0\)

\(\Leftrightarrow40m^2-112m-98=0\)

\(\Leftrightarrow40m^2-140m+28m-98=0\)

=>\(20m\left(2m-7\right)+14\left(2m-7\right)=0\)

=>(2m-7)(20m+14)=0

=>m=7/2 hoặc m=-7/10