tìm nghiệm nguyên dương: \(\sqrt{a}+\sqrt{b}=\sqrt{2012}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
và \(\sqrt{x}=\sqrt{2012}=2\sqrt{503}-\sqrt{y}\)
=> \(x=2012-4\sqrt{503y}+y\) là số nguyên dương
=> \(\sqrt{503y}\) là số nguyên dương
mà 503 là số nguyên tố và 0 < y < 2012
=> y = 503
=> x = 503
Kết luận:...
Bài đc đăng vào ngày 14/8/2019 mà đến 19/6/2020 mới đc giải?
từ đề bài => 0 < x; y < 2012 và
\(\sqrt{y}=\sqrt{2012}-\sqrt{x}\Rightarrow y=\left(\sqrt{2012}-\sqrt{x}\right)^2=2012+x-2\sqrt{2012}\sqrt{x}=2012+x-4.\sqrt{503.x}\)Vì y nguyên nên \(\sqrt{503.x}\) nguyên => x = 503.k2 Mà 0< x < 2012 =>0< 503. k2 < 2012 => 0< k2 < 4 => k2 = 1
=> x = 503 => y = 2012 + 503 - 4.503 = 503
Vậy x = y = 503
\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)
\(\Rightarrow2\sqrt{yz}=\left(x-y-z\right)+2\sqrt{3}\)
\(\Rightarrow4yz=\left(x-y-z\right)^2+12+4\sqrt{3}\left(x-y-z\right)\)
\(\Rightarrow4\sqrt{3}\left(x-y-z\right)=4yz-12-\left(x-y-z\right)^2\) (1)
\(\sqrt{3}\) là số vô tỉ nên đẳng thức xảy ra khi: \(x-y-z=0\)
Thay ngược vào (1) \(\Rightarrow yz=3\Rightarrow\left(y;z\right)=\left(1;3\right);\left(3;1\right)\)
\(\Rightarrow\sqrt{x+2\sqrt{3}}=\sqrt{4+2\sqrt{3}}\Rightarrow x=4\)
\(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\)
Bình phương 2 vế, ta có:
\(x+y+3+1=x+y\)
\(x+y+3+1-x-y=0\)
\(4=0\) (vô lý)
Vậy phương trình vô nghiệm
-Chúc bạn học tốt-
\(\sqrt{x+3\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
\(\Leftrightarrow3\sqrt{3}-2\sqrt{yz}=y+z-x\)
Ta có VP là số nguyên nên VT cũng phải là số nguyên
Giả sử \(yz=a^2\) thì VT không phải số nguyên
Nên yz không phải số chính phương.
Nên để VT là số nguyên thì chỉ có thể là O
\(\Rightarrow3\sqrt{3}=2\sqrt{yz}\)
\(\Rightarrow yz=\frac{27}{4}\) loại vì yz là số nguyên dương
Vậy PT vô nghiệm
Mong các bạn ủng hộ cho kênh youtube của mình nha !!
Tên youtube:P Music
Link:https://www.youtube.com/channel/UCs0JKZKs4zoDYqqtAmtiBBA?view_as=subscriber
Nhóm của mình gồm có:
Hậu Trần YTVN
Vanh_GoG_VN
M.Ichibi
P Music(là mình)
Mong các bạn ủng hộ nha !!