câu hỏi hay tặng 1 GP cho câu trả lời đúng . mong các bạn ủng hộ .
đề : cho bất kỳ các điểm A;B;C;D trong mặt phẳng chứng minh rằng :
\(\overline{AB}.\overline{CD}+\overline{BC}.\overline{DA}\ge\overline{AC}.\overline{BD}\)
mới đó mà lẫn rồi ...----------------................................................(ptol...)
mình sẽ giải bài này luôn nhé ! bài này là kiến thức lớp 10 nhưng mình thầy hầu hết các bạn cứ sữ dụng toán lớp dưới để làm . mà cx tốt lớp nhỏ nhưng các em không ớn gì toán lớp cao =))
chứng minh :
cho a;b;c;0 là các số phức tương ứng với A;B;C;D trong mặc phẳng phức (ở đây ta đặc điểm D cố định so với mặc phẳng phức thoi nên suy cho cùng tính tự do của điểm D cũng không bị mất đi)
khi đó : \(\overline{AB}.\overline{CD}+\overline{BC}.\overline{DA}\ge\overline{AC}.\overline{BD}\)
\(\Leftrightarrow\left|a-b\right|.\left|c\right|+\left|b-c\right|.\left|a\right|\ge\left|a-c\right|.\left|b\right|\) ...........................(*)
ta có : \(\left(a-b\right)c+\left(b-c\right)a=\left(a-c\right)b\)
\(\Leftrightarrow\left|\left(a-b\right)c+\left(b-c\right)a\right|=\left|\left(a-c\right)b\right|\)
áp dụng bất đẳng thức tam giác (1 dạng khác của BĐT mincopxki)
ta có \(\left|\left(a-b\right)c\right|+\left|\left(b-c\right)a\right|\ge\left|\left(a-b\right)c+\left(b-c\right)a\right|=\left|\left(a-c\right)b\right|\)
\(\Leftrightarrow\left|a-b\right|.\left|c\right|+\left|b-c\right|.\left|a\right|\ge\left|a-c\right|.\left|b\right|\) ..............(*) điều (*) được chứng minh ==> ĐPCME cho lên rồi anh ạ ! Có gì em tài trợ cho nhé anh !