K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

BĐT sai với $(x,y,z)=(4,6,1)$

7 tháng 2 2020

BĐ cũng sai với \(\left(x;y;z\right)=\left(1;5;3\right)\)

20 tháng 11 2019

Ta có: \(\frac{1}{2}.2x\left(1-x\right)\left(1-x\right)\le\frac{1}{2}\left[\frac{2x+1-x+1-x}{3}\right]^3=\frac{4}{27}\)

\(\Rightarrow\sqrt{x}\left(1-x\right)\le\frac{2\sqrt{3}}{9}\Rightarrow\frac{1}{\sqrt{x}\left(1-x\right)}\ge\frac{9}{2\sqrt{3}}\)

\(\Rightarrow\frac{\sqrt{x}}{1-x}\ge\frac{3\sqrt{3}}{2}x\). Thiết lập tương tự hai BĐT còn lại và cộng theo vế thu được đpcm.

NV
9 tháng 3 2020

a/ \(VT\ge\frac{\left(\sqrt{b}+\sqrt{c}\right)^2}{2\sqrt{a}}+\frac{\left(\sqrt{c}+\sqrt{a}\right)^2}{2\sqrt{b}}+\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\sqrt{c}}\)

\(VT\ge\frac{\left(\sqrt{b}+\sqrt{c}+\sqrt{c}+\sqrt{a}+\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

\(VT\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{a}+\sqrt{b}+\sqrt{c}\)

\(VT\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{abc}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

b/ \(VT=\sum\frac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\)

\(VT\le\sum\frac{x}{x+\sqrt{xz}+\sqrt{xy}}=\sum\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

Dấu "=" xảy ra khi \(x=y=z=1\)

9 tháng 3 2020

Bài 1 :

Áp dụng BĐT Cô - si cho 2 số không âm ta có :

\(VT=\Sigma_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\Sigma_{cyc}\sqrt{\frac{bc}{a}}\right)\)

\(\Leftrightarrow\Sigma_{cyc}\frac{b+c}{\sqrt{a}}\ge\left(\sqrt{\frac{ca}{b}}+\sqrt{\frac{ab}{c}}\right)+\left(\sqrt{\frac{ab}{c}}+\sqrt{\frac{bc}{a}}\right)+\left(\sqrt{\frac{bc}{a}}+\sqrt{\frac{ca}{b}}\right)\)

\(\Leftrightarrow\Sigma_{cyc}\frac{b+c}{\sqrt{a}}\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)

\(+3\sqrt[6]{abc}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

2 tháng 2 2019

Áp dụng BĐT AM-GM cho 3 số không âm, ta có: \(0< \sqrt[3]{yz.1}\le\frac{y+z+1}{3}\Rightarrow\frac{x}{\sqrt[3]{yz}}\ge\frac{3x}{y+z+1}\)

Làm tương tự với 2 hạng tử còn lại rồi cộng theo vế thì có:

\(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{zx}}+\frac{z}{\sqrt[3]{xy}}\ge3\left(\frac{x}{y+z+1}+\frac{y}{z+x+1}+\frac{z}{x+y+1}\right)\)

\(=3\left(\frac{x^2}{xy+xz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{zx+yz+z}\right)\ge^{Schwartz}3.\frac{\left(x+y+z\right)^2}{x+y+z+2\left(xy+yz+zx\right)}\)

\(=3.\frac{x^2+y^2+z^2+2\left(xy+yz+zx\right)}{x+y+z+2\left(xy+yz+zx\right)}\ge9.\frac{xy+yz+zx}{\sqrt{3\left(x^2+y^2+z^2\right)}+2\left(x^2+y^2+z^2\right)}\)

\(=9.\frac{xy+yz+zx}{3+2.3}=xy+yz+zx\) => ĐPCM.

Dấu "=" xảy ra khi x=y=z=1.

20 tháng 3 2019

có biết huệ ko

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Lời giải:

Ta thấy $\frac{x}{y^2+z^2}=\frac{x}{1-x^2}$

Ta sẽ chứng minh BĐT phụ sau:

$\frac{x}{1-x^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3x^2-1)$

$\Leftrightarrow x(\sqrt{3}x-1)^2(\sqrt{3}x+2)\geq 0$ (luôn đúng với mọi $x>0$

Hoàn toàn tương tự:

$\frac{y}{x^2+z^2}=\frac{y}{1-y^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3y^2-1)$

$\frac{z}{x^2+y^2}=\frac{z}{1-z^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3z^2-1)$

Cộng theo vế và thu gọn:

$P\geq \frac{3\sqrt{3}}{2}+\frac{\sqrt{3}}{2}.3(x^2+y^2+z^2-1)$

Hay $P\geq \frac{3\sqrt{3}}{2}$

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=\frac{1}{\sqrt{3}}$

AH
Akai Haruma
Giáo viên
2 tháng 2 2020

Lời giải:

Ta thấy $\frac{x}{y^2+z^2}=\frac{x}{1-x^2}$

Ta sẽ chứng minh BĐT phụ sau:

$\frac{x}{1-x^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3x^2-1)$

$\Leftrightarrow x(\sqrt{3}x-1)^2(\sqrt{3}x+2)\geq 0$ (luôn đúng với mọi $x>0$

Hoàn toàn tương tự:

$\frac{y}{x^2+z^2}=\frac{y}{1-y^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3y^2-1)$

$\frac{z}{x^2+y^2}=\frac{z}{1-z^2}\geq \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}(3z^2-1)$

Cộng theo vế và thu gọn:

$P\geq \frac{3\sqrt{3}}{2}+\frac{\sqrt{3}}{2}.3(x^2+y^2+z^2-1)$

Hay $P\geq \frac{3\sqrt{3}}{2}$

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z=\frac{1}{\sqrt{3}}$

7 tháng 3 2021

Dễ dàng chứng minh được:

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với \(a,b,c>0\)(1)

Dấu bằng xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Theo đề bài, vì x, y, z > 0 nên áp dụng (1), ta có:

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)(2)

Vì x y, z > 0 nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(x+y\ge2\sqrt{xy}\)(3)

Chứng mih tương tự, ta được;

\(y+z\ge2\sqrt{yz}\)(4);

\(z+x\ge2\sqrt{zx}\)(5)

Từ (3), (4), (5), ta được:

\(2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow2\left(x+y+z\right)\ge x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\frac{1}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\)\(\frac{1}{2\left(x+y+z\right)}\)

\(\Leftrightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{x+y+z}{2}\)

7 tháng 3 2021

Mà theo đề bài, \(x+y+z\ge3\) nên:

\(\frac{x+y+z}{2}\ge\frac{3}{2}\)

Suy ra \(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{3}{2}\left(6\right)\)

Từ (2) và (6), ta được:

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)(điều phải chứng minh)

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy nếu x, y, z > 0 và \(x+y+z\ge3\)thì \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)

1 tháng 1 2020

\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\)

\(\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)

\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)

\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\)

\(\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)

\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)