K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

Đặt: \(\left\{{}\begin{matrix}\frac{1}{x+y}=a\\\frac{1}{x-y}=b\end{matrix}\right.\)

Hệ đã cho trở thành: \(\left\{{}\begin{matrix}108b+63a=7\\81b+84a=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{27}\\b=\frac{1}{21}\end{matrix}\right.\)

\(\Rightarrow\frac{1}{x+y}=\frac{1}{27}\Rightarrow x+y=27\)

Và: \(\frac{1}{x-y}=\frac{1}{21}\Rightarrow x-y=21\)

Ta có hệ: \(\left\{{}\begin{matrix}x+y=27\\x-y=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=3\end{matrix}\right.\)

Vậy ................

cielxelizabeth -_- Máy tình để làm gì nhỉ?

6 tháng 11 2023

\(Đặt:a=\dfrac{1}{x};b=\dfrac{1}{y}\left(x,y\ne0\right)\\ \left\{{}\begin{matrix}\dfrac{108}{x}+\dfrac{63}{y}=7\\\dfrac{81}{x}+\dfrac{84}{y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}108a+63b=7\\81a+84b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}324a+189b=21\\324a+336b=28\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-147b=-7\\81a+84b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{-7}{-147}=\dfrac{1}{21}\\81a+84.\dfrac{1}{21}=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{21}\\81a=7-4=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{y}=\dfrac{1}{21}\left(TM\right)\\a=\dfrac{1}{x}=\dfrac{3}{81}=\dfrac{1}{27}\left(TM\right)\end{matrix}\right.\\ Vậy:\left\{{}\begin{matrix}x=27\\y=21\end{matrix}\right. \)

25 tháng 5 2017

Đặt ẩn phụ ^_^

14 tháng 3 2020

Đặt \(\frac{1}{x}=a,\frac{1}{y}=b\)

Ta có hệ phương trình:

\(\left\{{}\begin{matrix}15a-7b=9\\4a+9b=35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}60a-28b=36\\60a+135b=525\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-163b=-489\\4a+9b=35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\\4a+9.3=35\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=3\\4a=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\\a=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}=2\\\frac{1}{y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)

Vậy hệ phương trình có nghiệm duy nhất là (x;y) = (\(\frac{1}{2};\frac{1}{3}\))

9 tháng 2 2020

a) \(\left\{{}\begin{matrix}x+2y=-1\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=-6\\x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)

Vậy..............................................................................

b) \(\left\{{}\begin{matrix}\frac{5}{x}-\frac{6}{y}=3\\\frac{4}{x}+\frac{9}{y}=7\end{matrix}\right.\)ĐKXĐ: x,y≠0

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{20}{x}-\frac{24}{y}=12\\\frac{20}{x}+\frac{45}{y}=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\frac{69}{y}=23\\\frac{20}{x}+\frac{45}{y}=35\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=10\end{matrix}\right.\)

Vậy...................................................................................

c) \(\left\{{}\begin{matrix}3\sqrt{x+1}+\sqrt{y-1}=1\\\sqrt{x+1}-\sqrt{y-1}=-2\end{matrix}\right.\)ĐKXĐ:\(\left\{{}\begin{matrix}x\ge-1\\y\ge1\end{matrix}\right.\)

\(\Rightarrow4\sqrt{x+1}\)\(=-1\)(vô nghiệm)

Vậy hệ pt vô nghiệm

d) Nhân 3 pt đầu rồi thu gọn

NV
23 tháng 10 2020

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge16\\y\ge9\end{matrix}\right.\)

Từ pt thứ nhất của hệ:

\(\frac{8xy}{x^2+y^2+6xy}+\frac{17}{8}\left(\frac{x}{y}+\frac{y}{x}\right)=\frac{21}{4}\)

\(\Leftrightarrow\frac{8}{\frac{x}{y}+\frac{y}{x}+6}+\frac{17}{8}\left(\frac{x}{y}+\frac{y}{x}\right)=\frac{21}{4}\)

Đặt \(\frac{x}{y}+\frac{y}{x}=t\ge2\)

\(\Rightarrow\frac{8}{6+t}+\frac{17}{8}t=\frac{21}{4}\)

\(\Leftrightarrow\frac{17}{8}t^2+\frac{15}{2}t-\frac{47}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-\frac{94}{17}< 0\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}=2\Leftrightarrow x^2+y^2=2xy\)

\(\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\)

Thay xuống pt dưới:

\(\sqrt{x-16}+\sqrt{x-9}=7\)

\(\Leftrightarrow\sqrt{x-16}-3+\sqrt{x-9}-4=0\)

\(\Leftrightarrow\frac{x-25}{\sqrt{x-16}+3}+\frac{x-25}{\sqrt{x-9}+4}=0\)

\(\Leftrightarrow...\)

25 tháng 9 2019

có ái đó giúp mình với mình đang cần gấp

giải hệ phương trình 1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\) 2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\) 3 ,...
Đọc tiếp

giải hệ phương trình

1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)

2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)

3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)

4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)

5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)

6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)

7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)

8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)

9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)

3