K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2022

a. \(lim_{x\rightarrow3}\dfrac{x^3-27}{3x^2-5x-2}=\dfrac{3^3-27}{3.3^2-5.3-2}=\dfrac{0}{10}=0\)

b. \(lim_{x\rightarrow2}\dfrac{\sqrt{x+2}-2}{4x^2-3x-2}=\dfrac{\sqrt{2+2}-2}{4.2^2-3.2-2}=\dfrac{0}{8}=0\)

c. \(lim_{x\rightarrow1}\dfrac{1-x^2}{x^2-5x+4}=lim_{x\rightarrow1}\dfrac{\left(1-x\right)\left(x+1\right)}{\left(x-1\right)\left(x-4\right)}=lim_{x\rightarrow1}\dfrac{-\left(x+1\right)}{x-4}=\dfrac{-\left(1+1\right)}{1-4}=\dfrac{2}{3}\)

d. Câu này mình chịu, nhìn đề hơi lạ so với bình thường hehe

24 tháng 4 2020

cảm ơn ạ

10 tháng 11 2023

a: \(\lim\limits_{x\rightarrow-2}\dfrac{4-x^2}{2x^2+7x+6}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(2-x\right)\left(2+x\right)}{2x^2+4x+3x+6}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(2-x\right)\left(x+2\right)}{\left(x+2\right)\left(2x+3\right)}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{2-x}{2x+3}=\dfrac{2-\left(-2\right)}{2\cdot\left(-2\right)+3}=\dfrac{4}{-4+3}=-4\)

b: \(\lim\limits_{x\rightarrow4}\dfrac{2x^2-13x+20}{x^3+64}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{2x^2-8x-5x+20}{\left(x+4\right)\left(x^2-4x+16\right)}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{\left(x-4\right)\left(2x-5\right)}{x^3+64}\)

\(=\dfrac{\left(4-4\right)\left(2\cdot4-5\right)}{4^3+64}=0\)

c: \(\lim\limits_{x\rightarrow-1}\dfrac{2x^2+8x+6}{-2x^2+7x+9}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{2x^2+2x+6x+6}{-2x^2-2x+9x+9}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(2x+6\right)}{-2x\left(x+1\right)+9\left(x+1\right)}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(2x+6\right)}{\left(x+1\right)\left(-2x+9\right)}\)

\(=\lim\limits_{x\rightarrow-1}\dfrac{2x+6}{-2x+9}=\dfrac{2\cdot\left(-1\right)+6}{-2\cdot\left(-1\right)+9}\)

\(=\dfrac{4}{11}\)

18 tháng 11 2023

\(\lim\limits_{x\rightarrow4}\dfrac{2x^2-13x+20}{x^3-64}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{2x^2-8x-5x+20}{\left(x-4\right)\left(x^2+4x+16\right)}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{\left(x-4\right)\left(2x-5\right)}{\left(x-4\right)\left(x^2+4x+16\right)}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{2x-5}{x^2+4x+16}=\dfrac{2\cdot4-5}{4^2+4\cdot4+16}=\dfrac{3}{48}=\dfrac{1}{16}\)

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:
\(\lim\limits_{x\to 4}\frac{2x^2-13x+20}{x^3-64}=\lim\limits_{x\to 4}\frac{(2x-4)(x-4)}{(x-4)(x^2+4x+16)}=\lim\limits_{x\to 4}\frac{2x-4}{x^2+4x+16}=\frac{1}{12}\)

NV
29 tháng 2 2020

\(1=\lim\limits_{x\rightarrow0}\frac{\sqrt{x+4}-2}{2x}=\lim\limits_{x\rightarrow0}\frac{x}{2x}.\frac{1}{\sqrt{x+4}+2}=\lim\limits_{x\rightarrow0}\frac{1}{2\left(\sqrt{x+4}+2\right)}=\frac{1}{2\left(\sqrt{4}+2\right)}\)

\(2=\lim\limits_{x\rightarrow1}\frac{\sqrt{x+3}-2}{x-1}=\lim\limits_{x\rightarrow1}\frac{x-1}{x-1}.\frac{1}{\sqrt{x+3}+2}=\lim\limits_{x\rightarrow1}\frac{1}{\sqrt{x+3}+2}=\frac{1}{\sqrt{1+3}+2}\)

\(3=\lim\limits_{x\rightarrow3}\frac{\sqrt{2x+3}-x}{\left(x-1\right)\left(x-3\right)}=\lim\limits_{x\rightarrow3}\frac{2x+3-x^2}{\left(x-1\right)\left(x-3\right)}.\frac{1}{\sqrt{2x+3}+x}\)

\(=\lim\limits_{x\rightarrow3}\frac{\left(x+1\right)\left(3-x\right)}{\left(x-1\right)\left(x-3\right)}.\frac{1}{\sqrt{2x+3}+x}=\lim\limits_{x\rightarrow3}\frac{x+1}{\left(1-x\right)\left(\sqrt{2x+3}+x\right)}=\frac{3+1}{\left(1-3\right)\left(\sqrt{9}+3\right)}\)

\(4=\lim\limits_{x\rightarrow2}\frac{\left(x-2\right)\left(2x-1\right)}{\left(x+1\right)^2\left(x-2\right)}=\lim\limits_{x\rightarrow2}\frac{2x-1}{\left(x+1\right)^2}=\frac{4-1}{\left(2+1\right)^2}\)

P/s: lần sau bạn sử dụng tính năng gõ công thức ở kí hiệu \(\sum\) góc trên cùng bên trái khung soạn thảo ấy, khó nhìn đề quá chẳng muốn làm

29 tháng 2 2020

cảm ơn bạn nhiều nha !

mình sẽ rút kinh nghiệm.

AH
Akai Haruma
Giáo viên
5 tháng 3 2021

*** Mình nhớ là đã nhắc nhở bạn về việc sử dụng hộp công thức toán để viết đề dễ hiểu hơn. Lần nữa thì mình xin phép xóa bài nhé. Bạn sử dụng bộ gõ công thức toán ở biểu tượng $\sum$

Lời giải:

\(\lim\limits_{x\to +\infty}(\sqrt[3]{x^3+5x}-\sqrt{x^2-3x+6})=\lim\limits_{x\to +\infty}[(\sqrt[3]{x^3+5x}-x)-(\sqrt{x^2-3x+6}-x)]\)

\(=\lim\limits_{x\to +\infty}\left[\frac{5x}{\sqrt[3]{(x^3+5x)^2}+x\sqrt[3]{x^3+5x}+x^2}-\frac{-3x+6}{\sqrt{x^2-3x+6}+x}\right]\)

\(=\lim\limits_{x\to +\infty}[\frac{5}{\sqrt[3]{x^3+10x+\frac{25}{x}}+\sqrt[3]{x^2+5x}+x}-\frac{-3+\frac{6}{x}}{\sqrt{1-\frac{3}{x}+\frac{6}{x^2}}+1}]\)

\(=(0-\frac{-3}{2})=\frac{3}{2}\)

5 tháng 3 2021

\(=\lim\limits_{x\rightarrow3}\dfrac{\sqrt{3+2x}-3-\sqrt{7-x}+2}{2x-6}\)

\(=\lim\limits_{x\rightarrow3}\left(\dfrac{2x-6}{\left(2x-6\right)\left(\sqrt{3+2x}+3\right)}-\dfrac{3-x}{\left(2x-6\right)\left(\sqrt{7-x}+2\right)}\right)\)

\(=\dfrac{1}{\sqrt{3+2\cdot3}+3}+\dfrac{1}{2\cdot\left(\sqrt{7-3}+2\right)}=\dfrac{7}{24}\)

5 tháng 3 2021

dễ thấy hàm số có dạng 0/0

áp dụng l'hospital

\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{3+2x}-\sqrt{7-x}-1}{2x-6}\\ =\lim\limits_{x\rightarrow3}\dfrac{\left(\sqrt{3+2x}-\sqrt{7-x}-1\right)'}{\left(2x-6\right)'}=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{2}{2\sqrt{3+2x}}+\dfrac{1}{2\sqrt{7-x}}}{2}=\dfrac{7}{24}\)

 

9 tháng 6 2018

a) ( x - 3)4 + ( x - 5)4 = 82

Đặt : x - 4 = a , ta có :

( a + 1)4 + ( a - 1)4 = 82

⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82

⇔ 2a4 + 12a2 - 80 = 0

⇔ 2( a4 + 6a2 - 40) = 0

⇔ a4 - 4a2 + 10a2 - 40 = 0

⇔ a2( a2 - 4) + 10( a2 - 4) = 0

⇔ ( a2 - 4)( a2 + 10) = 0

Do : a2 + 10 > 0

⇒ a2 - 4 = 0

⇔ a = + - 2

+) Với : a = 2 , ta có :

x - 4 = 2

⇔ x = 6

+) Với : a = -2 , ta có :

x - 4 = -2

⇔ x = 2

KL.....

b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8

⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680

⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680

Đặt : n2 - 9n + 19 = t , ta có :

( t - 1)( t + 1) = 1680

⇔ t2 - 1 = 1680

⇔ t2 - 412 = 0

⇔ ( t - 41)( t + 41) = 0

⇔ t = 41 hoặc t = - 41

+) Với : t = 41 , ta có :

n2 - 9n + 19 = 41

⇔ n2 - 9n - 22 = 0

⇔ n2 + 2n - 11n - 22 = 0

⇔ n( n + 2) - 11( n + 2) = 0

⇔ ( n + 2)( n - 11) = 0

⇔ n = - 2 hoặc n = 11

+) Với : t = -41 ( giải tương tự )

8 tháng 6 2018

@Giáo Viên Hoc24.vn

@Giáo Viên Hoc24h

@Giáo Viên

@giáo viên chuyên

@Akai Haruma