cho a,b,n là STN
hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(\frac{a}{b}\)> 1, Suy ra: an < bn
Suy ra: an + ab < bn + ab
Suy ra: a (n + b) < b (n + a)
Suy ra: \(\frac{a}{b}\)> \(\frac{a+n}{b+n}\)
Nhầm, Suy ra: an > bn
Suy ra: an + ab > bn + ab
Suy ra: a (n + b) > b (n + a)
Để A có giá trị là một số nguyên thì \(3n+2⋮n\)
\(\Rightarrow3n+2⋮3n\Rightarrow2⋮n\)
\(\Rightarrow n\inƯ\left(2\right)=\left\{-1;1;2;-2\right\}\)
Vậy để A có giá trị nguyên thì \(n\in\left\{-1;1;2;-2\right\}\)
b)A=10^11-1/10^12-1
=> A< (10^11-1)+11/(10^12-1)+11=10^11+10/10^12+10=10.(10^10+1)/10.(10^11+1)=10^10+1/10^11+1<B
Vậy A<B
Vì a,b \(\in\)N* nên \(\frac{a+n}{b+n}>\frac{a}{b}\)(dựa vào công thức )
Vậy \(\frac{a+n}{b+n}>\frac{a}{b}\)
Ta có: \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{ab+bn}{b\left(b+n\right)}-\frac{ab+an}{b\left(b+n\right)}=\frac{bn-an}{b\left(b+n\right)}=\frac{n\left(b-a\right)}{b\left(n+n\right)}\)
Nếu: \(b>a\Rightarrow\frac{a+n}{b+n}>\frac{a}{n}\)
Nếu: \(b< a\Rightarrow\frac{a+n}{b+n}< \frac{a}{b}\)
Tui nghĩ là đề phải là \(a,b,c\inℕ^{\times}\) chứ nhỉ?
\(TH_1:\frac{a}{b}=1\Leftrightarrow a=b\Rightarrow\frac{a+n}{b+n}=\frac{a}{b}=1\)
\(TH_2:\frac{a}{b}>1\Leftrightarrow a>b\Leftrightarrow a+n>b+n\)
Mà: \(\frac{a+n}{b+n}\)có phần thừa so với \(1\) là \(\frac{a-b}{b+n};\frac{a}{b}\)có phần thừa so với \(1\)là \(\frac{a-b}{b}\)
Vì: \(\frac{a-b}{b+n}< \frac{a-b}{b}\Rightarrow\frac{a+n}{b+n}< \frac{a}{b}\)
\(TH_3:\frac{a}{b}< 1\Leftrightarrow a< b\Leftrightarrow a+n< b+n\)
Khi đó: \(\frac{a+n}{b+n}\) có phần bù với \(1\) là \(\frac{b-a}{b+n};\frac{a}{b}\)có phần bù tới \(1\)là \(\frac{b-a}{b}\)
Vì: \(\frac{b-a}{b+n}< \frac{b-a}{b}\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\)
Vậy: Nếu: \(\frac{a}{b}=1\Rightarrow\frac{a+n}{b+n}=\frac{a}{b}=1\)
Nếu: \(\frac{a}{b}>1\Rightarrow\frac{a+n}{b+n}< \frac{a}{b}\)
Nếu: \(\frac{a}{b}< 1\Rightarrow\frac{a+n}{b+n}>\frac{a}{b}\)