Cho đồng nhất thức
\(\frac{x^2-1}{x^3-3x-2}=\frac{A}{x-2}+\frac{B}{\left(x+1\right)^2}+\frac{C}{x+1}\)
Tính A + B + C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VẾ TRÁI: (x-1)(x+1) / (x-2)(x+1)^2
Vế phải: Quy đồng sao cho có mẫu là (x-2)(x+1)^2
Suy ra: x^2-1 = A(x+1)^2+ B(x-2)+ C(x+1)(x-2)
Vế phải nhân từng vế rồi ra kết quả:
x^2(A+C) + x(2A + B- C) + A- 2B - 2C
Đối chiếu với vế trái ( x^2-1)
Suy ra ta dc hệ phương trình:
A+ C =1
A- 2B- 2C = -1
2A + B - C= 0
Giải hệ phương trình ra ta dc
A =1/3
B=0
C= 2/3
a) Đk: x > 0 và x khác +-1
Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)
A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)
A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)
A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)
b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)
Vậy MaxA = 1/4 <=> x = 2
1.\(A=\frac{2x^2-16x+41}{x^2-8x+22}\) \(=\frac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\frac{3}{\left(x-4\right)^2+6}\ge\frac{1}{2}\)
Dấu '' = '' xảy ra khi x = 4.
Vậy MinA= \(\frac{1}{2}\) tại x = 4.
Quy đồng vế phải, chỉ quan tâm tử số:
\(A\left(x+1\right)^2+B\left(x-2\right)+C\left(x+1\right)\left(x-2\right)\)
\(=Ax^2+2Ax+A+Bx-2B+Cx^2-Cx-2C\)
\(=\left(A+C\right)x^2+\left(2A+B-C\right)x+A-2B-2C\)
Đồng nhất các hệ số với tử số của vế trái ta được:
\(\left\{{}\begin{matrix}A+C=1\\2A+B-C=0\\A-2B-2C=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A=\frac{1}{3}\\B=0\\C=\frac{2}{3}\end{matrix}\right.\)
Akai Haruma