K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2020

Đkxđ: ...

Đặt x2+ 15=a (a>0)

Pt ban đầu trở thành:

(a-10x)/(a-6x)=4x/(a-12x)

<=>a2-26ax+144x2=0

<=>(a-12x)(a-10x)=0

Xét th:a=10x

pt có nghiệm \(X=5\pm\sqrt{10}\)

Xét th:a=12x

Pt có nghiệm \(X=6\pm\sqrt{21}\)

2 tháng 2 2020

 làm như thế này nha:blablablablablablablabla hiểu hơm

9 tháng 8 2017

PP chung ở cả 3 câu,nói ngắn gọn nhé:

Chứng mình x khác 0,hay nói cách khác x=0 không là nghiệm của phương trình.

Chia cả tử và mẫu cho x ,rồi giải bình thường bằng cách đặt ẩn phụ.

Vd ở câu a>>>4/(4x-8+7/x)+3/(4x-10+7/x)=1.Sau đó đặt 4x+7/x=a>>>4/(a-8)+3/(a-10)=1>>>giải bình thường,các câu sau tương tự

17 tháng 3 2018

Ta có:\(\dfrac{x^2-10+15}{x^2-6x+15}=\dfrac{4x}{x^2-12x+15}\left(đkxđ:x\ne\sqrt{21}+6;-\sqrt{21}+6\right)\)

\(\Leftrightarrow\dfrac{x^2-6x+15-4x}{x^2-6x+15}=\dfrac{4x}{x^2-12x+15}\)

\(\Leftrightarrow1-\dfrac{4x}{x^2-6x+15}=\dfrac{4x}{x^2-12x+15}\)

\(\Leftrightarrow\dfrac{4x}{x^2-6x+15}+\dfrac{4x}{x^2-12x+15}=1\)

\(\Leftrightarrow\dfrac{4}{x-6+\dfrac{15}{x}}+\dfrac{4}{x-12+\dfrac{15}{x}}=1\)

Đặt \(x+\dfrac{15}{x}=t\)

PT\(\Leftrightarrow\dfrac{4}{t-6}+\dfrac{4}{t-12}=1\)

\(\Leftrightarrow4t-48+4t-24=t^2-18t+72\)

\(\Leftrightarrow8t-72=t^2-18t+72\)

\(\Leftrightarrow t^2-26t+144=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=18\\t=8\end{matrix}\right.\)

Thay vào từng trường hợp rồi tìm x

17 tháng 3 2018

\(\dfrac{x^2-10x+15}{x^2-6x+15}=\dfrac{4x}{x^2-12x+15}\)

đặt :\(x^2-6x+15=y\) ta đc:

\(\dfrac{y^2-4x}{y}=\dfrac{4x}{y^2-6x}\)

<=>\(\dfrac{\left(y^2-4x\right)\left(y^2-6x\right)}{y\left(y^2-6x\right)}=\dfrac{4xy}{y\left(y^2-6x\right)}\)

=>\(y^4-6xy^2-4xy^2+24x^2=4xy\)

<=>

13 tháng 5 2016

\(\frac{2}{x^2-4x+3}+\frac{2}{x^2-8x+15}+\frac{2}{x^2-12x+35}=-\frac{1}{2}\)(x khác 1;3;5;7)

<=>\(\frac{2}{x^2-3x-x+3}+\frac{2}{x^2-5x-3x+15}+\frac{2}{x^2-5x-7x+35}=-\frac{1}{2}\)

<=>\(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{2}{\left(x-3\right)\left(x-5\right)}+\frac{2}{\left(x-5\right)\left(x-7\right)}=-\frac{1}{2}\)

<=>\(\frac{1}{x-3}-\frac{1}{x-1}+\frac{1}{x-5}-\frac{1}{x-3}+\frac{1}{x-7}-\frac{1}{x-5}=-\frac{1}{2}\)

<=>\(\frac{1}{x-7}-\frac{1}{x-1}=-\frac{1}{2}\)

<=>\(2x-2-2x+14=-x^2+8x-7\)

<=>\(x^2-8x+19=0\)

<=>(x-4)2+3=0(vô lí)

Vậy PT vô nghiệm

28 tháng 11 2017

ĐK:\(x\ne-1;-3;-5;-7;-9\)

\(pt\Leftrightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}+\frac{2}{\left(x+7\right)\left(x+9\right)}=\frac{2}{5}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-...-\frac{1}{x+9}=\frac{2}{5}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+9}=\frac{2}{5}\)\(\Leftrightarrow\frac{8}{\left(x+1\right)\left(x+9\right)}=\frac{2}{5}\)

\(\Leftrightarrow2\left(x+1\right)\left(x+9\right)=40\)\(\Leftrightarrow x^2+10x-11=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+11=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=-11\end{cases}}\) (thoả)

Vậy....

26 tháng 7 2018

xin lỗi nha, bài đó bằng có một cái 1/5 thôi, tại viết sai

26 tháng 7 2018

ĐK : \(X\ne-1;-3;-7;-9\)

\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}+\frac{1}{x^2+16x+63}=\frac{1}{5}\)

\(\frac{1}{\left(x+2\right)^2-1}+\frac{1}{\left(x+4\right)^2-1}+\frac{1}{\left(x+6\right)^2-1}+\frac{1}{\left(x-8\right)^2-1}=\frac{1}{5}\)

\(\frac{1}{\left(x+2-1\right)\left(x+2+1\right)}+\frac{1}{\left(x+4-1 \right)\left(x+4+1\right)}+\frac{1}{\left(x+6-1\right)\left(x+6+1\right)}+\frac{1}{\left(x+8-1\right)\left(x+8+1\right)}=\frac{1}{5}\)

\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+9\right)}=\frac{1}{5}\)

\(\frac{1}{2}\cdot\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+....-\frac{1}{x+9}\right)=\frac{1}{5}\)

\(\frac{1}{2}\cdot\left(\frac{1}{x+1}-\frac{1}{x+9}\right)=\frac{1}{5}\)

\(\frac{1}{x+1}-\frac{1}{x+9}=\frac{1}{5}:\frac{1}{2}=\frac{2}{5}\)

\(\frac{8}{\left(x+1\right)\left(x+9\right)}=\frac{2}{5}\)

\(2\left(x+1\right)\left(x+9\right)=40\)

\(2x^2+20x+18=40\Leftrightarrow x^2+10x+9=20\)

\(\Leftrightarrow x^2+10x-11=0\Leftrightarrow x^2+10x-10-1=0\)

\(\Leftrightarrow\left(x^2-1\right)+\left(10x-10\right)=0\Leftrightarrow\left(x-1\right)\left(x+1\right)+10\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+11\right)=0\)

\(\orbr{\begin{cases}x-1=0\\x++11=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-11\end{cases}}}\)( Thõa mãn ) 

Vậy ...............

23 tháng 11 2016

Đk:\(x\ne-1;x\ne-3;x\ne-5;x\ne-7\)

\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{1}{9}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{1}{9}\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}\right)=\frac{1}{9}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}=\frac{2}{9}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+7}=\frac{2}{9}\)\(\Leftrightarrow\frac{6}{\left(x+1\right)\left(x+7\right)}=\frac{2}{9}\)

\(\Leftrightarrow2\left(x^2+8x+7\right)=54\)\(\Leftrightarrow x^2+8x+7=27\)

\(\Leftrightarrow x^2+8x-20=0\)\(\Leftrightarrow\left(x-2\right)\left(x+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-10\end{cases}}\)(thỏa mãn)