Cho tam giác ABC có E là trung điểm của BC sao cho góc EAB bằng 15 độ,Góc EAC bằng 30 độ.Tính góc C
Nhanh lên mọi người ơi mùng 6 phải nộp rồi
Ai làm nhanh tick nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh bổ đề đường trung bình:
Đề bài:Cho tam giác ABC có M,N lần lượt là trung điểm của cạnh AB,AC.Chứng minh rằng:\(MN//BC;MN=\frac{BC}{2}\)
Lấy E đối xứng với M qua N.
Ta có:
\(\Delta AMN=\Delta NCE\left(c.g.c\right)\Rightarrow AM=CE\Rightarrow MB=CE;AM//CE\)
\(\Delta BEM=\Delta BEC\left(c.g.c\right)\Rightarrow ME=BC;ME//BC\)
=> đpcm.
Gọi F là điểm đối xứng với C qua AE.CF cắt AE tại I.
Xét tam giác vuông AIC có \(\widehat{IAC}=30^0\Rightarrow IC=\frac{1}{2}AC\Rightarrow FC=AC\Rightarrow\Delta FAC\) đều ( vận dụng tính chất cạnh đối diện với góc \(30^0\) thì bằng một nửa cạnh huyền;tam giác vuông có 1 góc bằng \(60^0\) thì nó là tam giác đều)
Áp dụng tính chất đường trung bình vào \(\Delta CBF\),ta có:
\(\Rightarrow IE//FB\Rightarrow\widehat{BFC}=90^0\)
Do \(\widehat{CFA}=60^0\Rightarrow\widehat{BFA}=90^0+60^0=150^0\)
Lại có:\(\widehat{FAB}=\widehat{FAC}-\widehat{EAC}-\widehat{BAE}=60^0-30^0-15^0=15^0\)
Xét \(\Delta BFA\) có:\(\widehat{BFA}=150^0;\widehat{FAB}=15^0\Rightarrow\widehat{FBA}=15^0\Rightarrow\Delta BFA\) cân tại F.
\(\Rightarrow FB=FA\) mà \(FA=FC\Rightarrow FB=FC\Rightarrow\Delta FBC\) vuông cân tại F.
\(\Rightarrow\widehat{FCB}=45^0\Rightarrow\widehat{ACB}=\widehat{FCB}+\widehat{FCA}=45^0+60^0=105^0\)
Vậy \(\widehat{ACB}=105^0\)
a, Xét tam giác EAB và tam giác DAC có:
AB = AC (gt)
AD = AE (gt)
BE = CD (BE = BD + DE = DE + EC = CD)
=> Tam giác EAB = Tam giác DAC (c.c.c)
b,M là trung điểm của BC
=> AM là đường trung tuyến của tam giác ABC cân tại A (AB = AC)
=> AM là đường cao của tam giác ABC
hay AM _I_ BC
mà D, E thuộc BC
=> AM _I_ DE
hay AM là đường cao của tam giác ADE cân tại A (AD = AE)
=> AM là tia phân giác của DAE
bạn có thế trình bày rõ hơn được hơn, cụ thể là cách trình bày ý
nếu ko thì bạn có thể viết ý rồi để mình trình bày cung đc
\(\widehat{AEC}=\widehat{BAE}+\widehat{B}\\ =\dfrac{1}{2}\widehat{BAC}+\widehat{B}=\dfrac{1}{2}\left(\widehat{BAC}+\widehat{B}+\widehat{C}\right)+\dfrac{1}{2}\widehat{B}-\dfrac{1}{2}\widehat{C}\\ =\dfrac{1}{2}\cdot180^0+\dfrac{1}{2}\left(\widehat{B}-\widehat{C}\right)=90^0+\dfrac{1}{2}\cdot30^0=105^0\)