K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2020

Vì \(\frac{x-y}{x+y}\) =\(\frac{z-x}{z+x}\) \(\Rightarrow\) \(\frac{x-y}{z-x}\) =\(\frac{x+y}{z+x}\) =\(\frac{x-y+x+y}{z-x+z+X}\) =\(\frac{x}{z}\) (theo tính chất dãy tỉ số bằng nhau )

                                           \(\Rightarrow\) (x-y).z = (z-x).x

                                           \(\Leftrightarrow\)xz-yz = xz -x2

                                                       \(\Rightarrow\) x2    = yz    (đpcm)

Vậy x2 = yz