K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2020

Ta có \(\hept{\begin{cases}2^{3^{100}}=\left(2^3\right)^{100}=6^{100}\\3^{2^{100}}=\left(3^2\right)^{100}=9^{100}\end{cases}}\)

Mà 9>6>0 \(\Rightarrow6^{100}< 9^{100}\)

                 \(\Rightarrow2^{3^{100}}< 3^{2^{100}}\)

                     Học tốt

9 tháng 2 2022

Hong bé ơi.Bé hong follow anh mà đòi xin đáp án của anh à

9 tháng 2 2022

bucquabucquabucqua đùa nhau chắc

 

Điền dấu " < " nhé bạn !

Học tốt nhé !

Kết quả hình ảnh cho anime nữ

20 tháng 1 2019

Đành dùng cách giảm bậc lũy thừa :v Cách này mới nghĩ ra:

\(2^{3^{100}}=2^{\left(3^{50}\right)^2}\) và \(3^{2^{100}}=3^{\left(2^{50}\right)^2}\)

Ta sẽ so sánh: \(2^{3^{50}}\) và \(3^{2^{50}}\)

Ta có: \(2^{3^{50}}=2^{\left(3^5\right)^{10}}\) và \(3^{2^{50}}=3^{\left(2^5\right)^{10}}\)

Ta sẽ so sánh: \(2^{3^5}\)và \(3^{2^5}\)

Lại có: \(2^{3^5}=2^{\left(3^1\right)^5}\) và \(3^{2^5}=3^{\left(2^1\right)^5}\)

Ta sẽ so sánh: \(2^3\) và \(3^2\)

Ta có: \(2^3=8< 9=3^2\) tức là: \(2^3< 3^2\)

Từ đó suy ra: \(2^{3^{100}}< 3^{2^{100}}\)

DT
25 tháng 6 2023

\(C=3+3^2+3^3+...+3^{100}\\ 3C=3^2+3^3+3^4+...+3^{101}\\ 3C-C=2C=3^{101}-3\\ C=\dfrac{3^{101}-3}{2}< D=\dfrac{3^{101}}{2}\)

30 tháng 5 2018

Ta có:

+) 2150=(23)50

+) 3100=(32)50

Mà (23)50<(32)<50

=> 2150<3100

Vậy ...

Chúc bạn học tốt

30 tháng 5 2018

2150 và 3100

2150 = ( 250 = 850

3100 = ( 32 ) 50 = 950

Vì 8 < 9 

= >  850  < 950

18 tháng 4 2016

2^100 < 3^31 nha s4.jpgNạc Nửa Mợ

18 tháng 4 2016

2^100=4^50

Vì 4>3 ; 50>31=> 4^50>3^31=>2^100>3^31