cho tam giác ABCvuông tại A. Trên tia đối của tia CBlấy điểm E sao cho BD=CE
a, C/minh tam giác ABC cân
b, Nếu cho thêm góc BAC=60 độ và BD=CE=DC Tính các góc của tam giácADE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB và ΔAEC có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔADB=ΔAEC
Suy ra: AD=AE
hay ΔADE cân tại A
a, Xét tam giác abd và tam giác ace có
ab=ac(tam giác abc cân tại a)
bd=ce(theo cách vẻ hình)
góc abd = góc ace
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
ΔADE cântại A
mà AM vuông góc
nen AM là phân giác của góc DAE
c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔABH=ΔACK
=>BH=CK
d: Gọi O là giao của BH và CK
góc OBC=góc HBD
góc OCB=góc KCE
mà góc HBD=góc KCE
nên góc OBC=góc OCB
=>OB=OC
=>O nằm trên trung trực của BC
=>A,M,O thẳng hàng
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
ΔADE cântại A
mà AM vuông góc
nen AM là phân giác của góc DAE
c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔABH=ΔACK
=>BH=CK
d: Gọi O là giao của BH và CK
góc OBC=góc HBD
góc OCB=góc KCE
mà góc HBD=góc KCE
nên góc OBC=góc OCB
=>OB=OC
=>O nằm trên trung trực của BC
=>A,M,O thẳng hàng
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
ΔADE cântại A
mà AM vuông góc
nen AM là phân giác của góc DAE
c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔABH=ΔACK
=>BH=CK
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
DO đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
Ta có: DE=DB+BC+CE
nên DE=AB+BC+AC=CABC
Bạn tự vẽ hình nha!
a.
Ta có:
mà B1 = C1 (tam giác ABC cân tại A)
=> B2 = C2 (1)
Xét tam giác ADB và tam giác AEC:
AB = AC (tam giác ABC cân tại A)
B2 = C2 (theo 1)
BD = CE (gt)
=> Tam giác ADB = ACE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE
b.
Xét tam giác AHB vuông tại A và tam giác AKC vuông tại K:
AB = AC (tam giác ABC cân tại A)
A1 = A2 (tam giác ADB = tam giác AEC)
=> Tam giác AHB = Tam giác AKC (cạnh huyền - góc nhọn)
=> BH = CK (2 cạnh tương ứng)
AH = AK (2 cạnh tương ứng)
c.
Xét tam giác HDB vuông tại H và tam giác KEC vuông tại K:
BH = CK (theo câu b)
BD = CE (gt)
=> Tam giác HDB = Tam giác KEC (cạnh huyền - cạnh góc vuông)
Ta có:
DBH = IBC (2 góc đối đỉnh)
KCE = ICB (2 góc đối đỉnh)
mà DBH = KCE (tam giác HDB = tam giác KEC)
=> IBC = ICB
=> Tam giác IBC cân tại I
Hình như là sai đề rồi bạn !!!