cho tam giác ABC,góc A < 1200.Về phía ngoài tam giác ABC vã các Tam giác đều ABD và ACE
a,C/m BE=CD
b,Gọi I là giao điểm của BE và CD.Tính góc BID
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ấn vào đúng 0 sẽ ra đáp án mình giải
mình làm bài này rồi
a.Vì ΔABD,ΔACE đều
→AD=AB,AC=AE,ˆDAB=ˆCAE=60°°
Xét ΔACD,ΔABE có:
AD=ABAD=AB
ˆDAC=ˆDAB+ˆBAC=ˆEAC+ˆCAB=ˆBAE
→ΔADC=ΔABE(c.g.c)
AC=AE
b.Gọi AB∩CD=F
Từ câu b →ˆADC=ˆABE
→ˆADF=ˆFBI
→ˆFIB=180o−ˆIFB−ˆIBF=180o−ˆAFD−ˆFDA=ˆDAF=ˆDAB=60°°
→ˆBIC=180o−ˆFIB=120o→BIC^=180o−FIB^=120°°
c.Từ câu a →BE=CD
Xét ΔADM,ΔABN có:
AD=AB
ˆADM=ˆADC=ˆABE=ˆABN
DM=1212CD=1212BE=BN
→ΔADM=ΔABN(c.g.c)
→AM=AN,ˆDAM=ˆBAN
→ˆMAN=ˆBAN−ˆBAM=ˆDAM−ˆBAM=ˆDAB=60°°
→ΔAMN
a) Ta có tam giác ABD và tam giác ACE là hai tam giác đều, do đó các cạnh AB và AC đều bằng nhau. Vì tam giác ABC là tam giác vuông cân tại A, nên ta có AB = AC.
b) Gọi y là giao điểm của đường thẳng BE và CD. Ta cần tính góc BIC.
Vì tam giác ABC là tam giác vuông cân, nên góc BAC = 45 độ. Vì tam giác ABD là tam giác đều, nên góc ABD = 60 độ.
Vì tam giác ACE là tam giác đều, nên góc ACE = 60 độ. Vì tam giác ABD và tam giác ACE là hai tam giác đều, nên góc BDA = góc CEA = 60 độ.
Vì tam giác BDA và tam giác CEA là hai tam giác đều, nên góc BCD = góc BEC = 60 độ.
Vậy, ta có góc BIC = góc BCD + góc BAC = 60 độ + 45 độ = 105 độ.
a: Ta có: \(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=90^0+60^0=150^0\)
\(\widehat{CAD}=\widehat{CAB}+\widehat{DAB}=90^0+60^0=150^0\)
Do đó: \(\widehat{BAE}=\widehat{CAD}\)
Xét ΔEAB và ΔCAD có
EA=CA
\(\widehat{EAB}=\widehat{DAC}\)
AB=AD
Do đó: ΔEAB=ΔCAD
=>EB=DC
b: Sửa đề: I là giao điểm của BE và CD
Ta có: ΔEAB=ΔCAD
=>\(\widehat{AEB}=\widehat{ACD};\widehat{ABE}=\widehat{ADC}\)
Xét tứ giác AICE có \(\widehat{ACI}=\widehat{AEI}\)
nên AICE là tứ giác nội tiếp
=>\(\widehat{AIC}+\widehat{AEC}=180^0\)
=>\(\widehat{AIC}+60^0=180^0\)
=>\(\widehat{AIC}=120^0\)
Xét tứ giác AIBD có \(\widehat{ABI}=\widehat{ADI}\)
nên AIBD là tứ giác nội tiếp
=>\(\widehat{AIB}+\widehat{ADB}=180^0\)
=>\(\widehat{AIB}=120^0\)
\(\widehat{BIC}+\widehat{AIC}+\widehat{AIB}=360^0\)
=>\(\widehat{BIC}+120^0+120^0=360^0\)
=>\(\widehat{BIC}=120^0\)
a: Xet ΔBAE và ΔDAC có
BA=DA
góc BAE=góc DAC(=150 độ)
AE=AC
=>ΔBAE=ΔDAC
=>BE=DC
b: Gọi F là giao của AB và CD
Xét ΔADF và ΔIBF có
goc ADF=góc FBI
góc AFD=góc BFI
=>ΔADF đồng dạng với ΔFBI
=>góc DAF=góc BIF=60 độ
=>góc BIC=120 độ
a) Ta có góc DAC=60o+góc BAC= góc BAE
Xét tam giác DAC và tam giác BAE có:
DA=BA
góc DAC=góc BAC
AC=AE
Nên tam giác ADC= tam giác ABE (c.g.c)
b) J thuộc DC sao cho DJ=BI
Xét tam giác ADJ và tam giác ABI có:
AD=AB
góc ADJ=góc ABI (vì tam giác ADC= tam giác ABE)
DJ=BI
Nên tam giác ADJ= tam giác ABI (c.g.c)
Suy ra AJ=AI (2 cạnh tương ứng)
Mà góc JAI= góc JAB+ góc BAI = góc JAB+ góc DAJ=60o
Nên tam giác AIJ đều nên góc =60o
Lại có tam giác ADJ= tam giác ABI:
Nên góc AIB=góc AJD=180o - góc AJI=120o
=> góc BID = góc AIB- góc AID =60o
c, Théo câu a ta có BE=CD do đó DM=BN
Lại có tam giác DAC = tam giác BAE nên góc ABN= góc ADM
Xét tam giác ABN và tam giác ADM có:
AB=AD
góc ABN= góc ADM
BN=DM
=> tam giác ABN = tam giác ADM => AN=AM; góc DAM= góc BAN
=> góc DAM - góc BAM = góc BAN- góc BAM = AM=AN; góc MAN= góc DAB =60o
=> tam giác AMN là tam giác đều
d, Ta có:
góc AIE= 180o - góc AIB =180o - góc AID - góc BID =1800-600-600
= 60^o = AID
=> đpcm
nhìn hình là bt k bằng nhau, câu a) ý, BE và CD k bằng nhau nha
△ABC: BAC < 120o. △ABD đều. △ACE đều
BE ∩ CD = { I }
KL
a, BE = CD
b, BID = ?
Bài giải:
a, Vì △ABD đều => AB = BD = AD và ABD = BAD = BDA = 60o
Vì △ACE đều => AC = CE = AE và ACE = CAE = CEA = 60o
Ta có: DAC = DAB + BAC
BAE = BAC + CAE
Mà CAE = DAB = 60o
=> BAE = DAC
Xét △DAC và △BAE
Có: AD = AB (cmt)
DAC = BAE (cmt)
AC = AC (cmt)
=> △DAC = △BAE (c.g.c)
=> DC = BE (2 cạnh tương ứng)
b, Vì △DAC = △BAE (cmt)
=> ADC = ABE (2 góc tương ứng)
Ta có: BDA = 60o = IDA + IDB
Mà IDA = ABI (cmt)
=> IDB + ABI = 60o
Xét △IBD có: IDB + IBD + BID = 180o
=> IDB + ABI + DBA + BID = 180o
=> 60o + 60o + BID = 180o
=> BID = 60o