CMR:
\(\frac{1}{1.2.3}+\frac{1}{2.3.\text{4}}+\frac{1}{3.\text{4}.5}+...+\frac{1}{98.99.100}=\frac{\text{4}9\text{4}9}{19800}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt biểu thức trong ngoặc là A
\(3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+\frac{3}{3.4.5.6}+...+\frac{3}{7.8.9.10}.\)
\(3A=\frac{4-1}{1.2.3.4}+\frac{5-2}{2.3.4.5}+\frac{6-3}{3.4.5.6}+...+\frac{10-7}{7.8.9.10}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+\frac{1}{3.4.5}-\frac{1}{4.5.6}+...+\frac{1}{7.8.9}-\frac{1}{8.9.10}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{8.9.10}\Rightarrow A=\frac{1}{1.2.3.3}-\frac{1}{3.8.9.10}\)
Từ đó tính ra x . Bạn tự làm nốt nhé. Ngại tính
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)
\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)
\(=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+...+\frac{1}{98!}-\frac{1}{100!}\)
\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)
Vậy \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\left(đpcm\right)\)
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
Bài 5 :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{59}\)
\(A=1-\frac{1}{50}\)
từ trên ta có : \(1-\frac{1}{50}< 1\)
\(\Rightarrow A< 1\)
a) -2 /3 x + 1/5 = 3/10
-2/3x =1/10
x = -3/20
vậy x = -3/20
b) 25/9 - 12/13x = 7/
12/13x = 2
x = 13/6
c) (x) - 3/4 =5/3
(x) = 29/12
x = 29/12 ; -29/-12
d) x = 11/2
\(\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{2}\frac{\text{5}}{\text{27}}-\text{10}\frac{\text{5}}{\text{6}}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\left(\text{1}\frac{\text{3}}{\text{7}}+\frac{\text{10}}{\text{3}}\right):\left(\text{12}\frac{\text{1}}{\text{3}}-\text{14}\frac{\text{2}}{\text{7}}\right)}=\frac{\left[\text{13}\frac{\text{1}}{\text{4}}-\left(\text{2}\frac{\text{5}}{\text{27}}+\text{10}\frac{\text{5}}{\text{6}}\right)\right].\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{100}}{\text{21}}:\frac{\text{-41}}{\text{21}}}\)
\(=\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{13}\frac{\text{1}}{54}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\frac{\text{25}}{\text{108}}.\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}\)
\(=\frac{\text{53}\frac{\text{1}}{\text{4}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\text{100}}{\frac{-\text{100}}{\text{41}}}=\text{-41}\)
Giải :
\(\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{2}\frac{\text{5}}{\text{27}}-\text{10}\frac{\text{5}}{\text{6}}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\left(\text{1}\frac{\text{3}}{\text{7}}+\frac{\text{10}}{\text{3}}\right):\left(\text{12}\frac{\text{1}}{\text{3}}-\text{14}\frac{\text{2}}{\text{7}}\right)}=\frac{\left[\text{13}\frac{\text{1}}{\text{4}}-\left(\text{2}\frac{\text{5}}{\text{27}}+\text{10}\frac{\text{5}}{\text{6}}\right)\right].\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{100}}{\text{21}}:\frac{\text{-41}}{\text{21}}}\)
\(=\frac{\left(\text{13}\frac{\text{1}}{\text{4}}-\text{13}\frac{\text{1}}{54}\right).\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\frac{\text{25}}{\text{108}}.\text{230}\frac{\text{1}}{\text{25}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}\)
\(=\frac{\text{53}\frac{\text{1}}{\text{4}}+\text{46}\frac{\text{3}}{\text{4}}}{\frac{\text{-100}}{\text{41}}}=\frac{\text{100}}{\frac{-\text{100}}{\text{41}}}=\text{-41}\)
~~Học tốt~~
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
= \(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)
= \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
= \(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}\left(\text{đpcm}\right)\)
\(VT=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99.100}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}=VP\) (đpcm)