Tính (rút gọn):
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
<=> \(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
<=>\(\frac{\left(x+6\right)\left(x+7\right)+\left(x+4\right)\left(x+7\right)+\left(x+4\right)\left(x+5\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
Từ đó, bạn tính ra nhá! Hơi dài, ai có cách nào ngắn hơn thì nói với mình nha!
ĐK : \(\left(x\ne-4;x\ne-5;x\ne-6;x\ne-7\right)\)
\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{3}{x^2+11x+28}=\frac{1}{18}\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Rightarrow x^2+11x-26=0\)
\(\Rightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-13\end{cases}}\)
Vậy pt có tập nghiệm là \(S=\left\{2;-13\right\}\)
Đk:\(\left(x\ne-4;x\ne-5;x\ne-6;x\ne-7\right)\)
\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{3}{x^2+11x+28}=\frac{1}{18}\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Rightarrow x^2+11x-26=0\)
\(\Rightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=-13\end{array}\right.\)
Vậy pt có tập nghiệm là S={2,-13}
Đk:(x≠−4;x≠−5;x≠−6;x≠−7)(x≠−4;x≠−5;x≠−6;x≠−7)
⇒1(x+4)(x+5)+1(x+5)(x+6)+1(x+6)(x+7)=118⇒1(x+4)(x+5)+1(x+5)(x+6)+1(x+6)(x+7)=118
⇒1x+4−1x+5+1x+5−1x+6+1x+6−1x+7=118⇒1x+4−1x+5+1x+5−1x+6+1x+6−1x+7=118
⇒1x+4−1x+7=118⇒1x+4−1x+7=118
⇒3x2+11x+28=118⇒3x2+11x+28=118
⇔x2+11x+28=54⇔x2+11x+28=54
⇒x2+11x−26=0⇒x2+11x−26=0
⇒(x−2)(x+13)=0⇒(x−2)(x+13)=0
⇒[x=2x=−13⇒[x=2x=−13
Vậy pt có tập nghiệm là S={2,-13}
\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}\)
\(\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
phân tích mẫu thành nhân tử r áp dụng \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) sau đó rút gọn quy đồng
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\) \(\left(ĐKXĐ:x\ne0;x\ne-4;x\ne-5;x\ne-6;x\ne-7\right)\)
\(\Leftrightarrow\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}+\frac{1}{x^2+6x+7x+42}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x\left(x+4\right)+5\left(x+4\right)}+\frac{1}{x\left(x+5\right)+6\left(x+5\right)}+\frac{1}{x\left(x+6\right)+7\left(x+6\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{\left(x+6\right)\left(x+7\right)+\left(x+4\right)\left(x+7\right)+\left(x+4\right)\left(x+5\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{\left(x^2+13x+42\right)+\left(x^2+11x+28\right)+\left(x^2+9x+20\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{x^2+13x+42+x^2+11x+28+x^2+9x+20}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3x^2+33x+90}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3\left(x^2+11x+30\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)=18.3\left(x^2+11x+30\right)\)
\(\Leftrightarrow\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)=54\left(x+5\right)\left(x+6\right)\)
\(\Leftrightarrow\left(x+4\right)\left(x+7\right)=54\)
\(\Leftrightarrow x^2+11x+28-54=0\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow x^2+13x-2x-26=0\)
\(\Leftrightarrow x\left(x+13\right)-2\left(x+13\right)=0\)
\(\Leftrightarrow\left(x+13\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+13=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-13\left(tm\right)\\x=2\left(tm\right)\end{cases}}\)
\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow x^2+11x-26=0\)
\(\Rightarrow x=2\)
Ta có: \(\frac{1}{x^2+9x+20}\)\(+\frac{1}{x^2+11x+30}\)\(+\frac{1}{x^2+13x+42}\)
=\(\frac{1}{x^2+4x+5x+20}\)\(+\frac{1}{x^2+5x+6x+30}\)\(+\frac{1}{x^2+6x+7x+42}\)
=\(\frac{1}{x\left(x+4\right)+5\left(x+4\right)}\)\(+\frac{1}{x\left(x+5\right)+6\left(x+5\right)}\)\(+\frac{1}{x\left(x+6\right)+7\left(x+6\right)}\)
=\(\frac{1}{\left(x+4\right)\left(x+5\right)}\)\(+\frac{1}{\left(x+5\right)\left(x+6\right)}\)\(+\frac{1}{\left(x+6\right)\left(x+7\right)}\)
=\(\frac{1}{x+4}-\frac{1}{x+5}\)\(+\frac{1}{x+5}-\frac{1}{x+6}\)\(+\frac{1}{x+6}-\frac{1}{x+7}\)
=\(\frac{1}{x+4}-\frac{1}{x+7}\)
=\(\frac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}\)=\(\frac{3}{\left(x+4\right)\left(x+7\right)}\)
\(\frac{1}{x^2+9x+20}\) \(+\) \(\frac{1}{x^2+11x+30}\) \(+\)\(\frac{1}{x^2+13x+42}\)
= \(\frac{1}{\left(x+4\right)\left(x+5\right)}\)\(+\) \(\frac{1}{\left(x+5\right)\left(x+6\right)}\) \(+\) \(\frac{1}{\left(x+6\right)\left(x+7\right)}\)
= \(\frac{1}{x+4}\)\(-\)\(\frac{1}{x+5}\) \(+\)\(\frac{1}{x+5}\)\(-\)\(\frac{1}{x+6}\)\(+\)\(\frac{1}{x+6}\)\(-\)\(\frac{1}{x+7}\)
= \(\frac{1}{x+4}\)\(-\)\(\frac{1}{x+7}\)= \(\frac{x+7-\left(x+4\right)}{\left(x+4\right)\left(x+7\right)}\)= \(\frac{3}{x^2+11x+28}\)
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}\)
\(=\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}\)
\(=\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}\)
\(=\frac{1}{x+4}-\frac{1}{x+7}=\frac{3}{x^2+11x+28}\)