Cho a.b=19911992 và a;b∈N. Hỏi a+b⋮1992 hay ko? Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(a^3+b^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
Thay \(ab=40\) và \(a+b=-6\) vào biểu thức ta có
\(\left(-6\right)^3-3\cdot7\cdot\left(-6\right)=-90\)
b) Ta có: \(a^3-b^3\)
\(=\left(a-b\right)^3+3ab\left(a-b\right)\)
Thay \(ab=40\) và \(a-b=3\) vào biểu thức ta có:
\(3^3+3\cdot40\cdot3=387\)
a: a^3+b^3=(a+b)^3-3ab(a+b)
=(-6)^3-3*7*(-6)
=-90
b: a^3-b^3=(a-b)^3+3ab(a-b)
=3^3+3*40*3
=387
a.
\(\overrightarrow{a}.\overrightarrow{b}=2.\left(-3\right)+\left(-1\right).4=-10\)
b.
\(\overrightarrow{a}.\overrightarrow{b}=2.\left(-3\right)+5.1=-1\)
Đáp án + Giải thích các bước giải:
Ta có t/c rằng số nào nhân với 00 cũng bằng 00
Vậy nếu aa hoặc bb bằng 00 thì a.b=0a.b=0
Vậy chọn A VÀ C
\(a.\) \(a.b< 0\)
\(\Leftrightarrow a\) và \(b\) là 2 số khác dấu.
Mà: \(a>b\)
\(\Rightarrow\) \(a\) là số âm và \(b\) là số dương.
\(b.\) \(a.b>0\)
\(\Leftrightarrow a\) và \(b\) cùng dấu
Mà: \(a+b< 0\)
\(\Rightarrow a\) và \(b\) là số âm.
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)
1991 đồng dư -1 ( mod 1992)
=> a.b đồng dư -1^1992 = 1 (mod 1992)
=> 0 chia hết
Cách làm hơi kì lạ một chút, mong bạn ghi đầy đủ để mình dễ hiểu hơn nhé