Cho tam giác ABC có góc B bằng góc C. Tia phân giác của góc A cắt BC tại I. Chứng minh
A. Tam giác ABI= tam giác ACI
B. AB= AC
C. AI là đường trung trực của BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABI và ΔACI có
AB=AC
góc BAI=góc CAI
AI chung
=>ΔABI=ΔACI
b: ΔACB cân tại A
mà AI là phân giác
nên AI vuông góc BC
c: Xét ΔBAC có
AI,CM là các đườg trung tuyến
AI căt CM tại G
=>G là trọng tâm
=>BG là đường trung tuyến của ΔABC
b: Ta có: ΔBAC cân tại A
mà AM là đường cao
nên M là trung điểm của BC
a: Xét ΔABI và ΔACI có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
Do đó: ΔABI=ΔACI
a: Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
=>\(\widehat{BAI}=\widehat{CAI}\)
mà tia AI nằm giữa hai tia AB,AC
nên AI là phân giác của \(\widehat{BAC}\)
b: Ta có: BN+NM=BM
CM+MN=CN
mà BM=CN
nên BN=CM
Xét ΔANB và ΔAMC có
AB=AC
\(\widehat{ABN}=\widehat{ACM}\)
BN=CM
Do đó: ΔANB=ΔAMC
=>AM=AN
c: Ta có: ΔAIB=ΔAIC
=>\(\widehat{AIB}=\widehat{AIC}\)
mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)
nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)
=>AI\(\perp\)BC
d: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
Ta có: ΔAMN cân tại A
mà AI là đường cao
nên AI là đường trung trực của MN
a: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
=>ΔAIB=ΔAIC
b: Xét tứ giác BECF có
I là trung điểm chung củaBC và EF
=>BECF là hình bình hành
=>BE//CF
=>CF vuông góc FI
a: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
=>ΔAIB=ΔAIC
b: Xét tứ giác BECF có
I là trung điểm chung củaBC và EF
=>BECF là hình bình hành
=>BE//CF
=>CF vuông góc FI
a,Ta có :\(B=C\)
\(=>\Delta ABC\)CÂN TẠI A
\(=>AB=AC\)
Xét \(\Delta ABI\)VÀ\(\Delta ACI\)CÓ
\(AB=AC\)(CM TRÊN)
\(A_1=A_2\)(GT)
\(AI\)(CẠNH CHUNG)
\(=>\Delta ABI=\Delta ACI\)(C.G.C)
b, c/m câu a
c,Ta cs : góc \(AIB\)+\(AIC\)\(=180^0\)
Do góc \(AIB=AIC\)(câu a)
\(=>\)góc \(AIB=AIC=90^0\)(1)
Vì \(BI=CI\)(2)
Từ 1 và 2 => AI là đg trung trực của BC (ĐPCM)