K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2015

\(A=2\left(y^2-2xy+x^2\right)+\left(x^2-3x+\frac{9}{4}\right)+2007-\frac{9}{4}\)

   \(=2\left(y-x\right)^2+\left(x-\frac{3}{2}\right)^2+2004,75\ge2004,75\)

A Min = 2004,75 khi x=y =3/2 

AH
Akai Haruma
Giáo viên
6 tháng 8 2017

Lời giải:

Ta có \(A=3x^2-4xy+2y^2-3x+2007\)

\(\Leftrightarrow A=(x^2-3x+\frac{9}{4})+2(x^2-2xy+y^2)+\frac{8019}{4}\)

\(\Leftrightarrow A=(x-\frac{3}{2})^2+2(x-y)^2+\frac{8019}{4}\)

Thấy \((x-\frac{3}{2})^2,(x-y)^2\geq 0\) nên \(A\geq \frac{8019}{4}\)

Vậy \(A_{\min}=\frac{8019}{4}\Leftrightarrow x=y=\frac{3}{2}\)

25 tháng 10 2019

\(A=3x^2+4xy+4y^2-3x-2y+15\)

\(=\left(x^2+4xy+4y^2\right)-\left(x+2y\right)+\frac{1}{4}+2x^2-2x+\frac{59}{4}\)

\(=\left(x+2y-\frac{1}{2}\right)^2+2\left(x-\frac{1}{2}\right)^2+\frac{57}{4}\ge\frac{57}{4}\)

Đẳng thức xảy ra khi x =1/2; y =0

Vậy..

6 tháng 8 2017

Đặt \(A=3x^2-4xy+2y^2-3x+2007\)

       \(A=2x^2-4xy+2y^2+x^2-3x+2007\)

      \(A=2\left(x-y\right)^2+x^2-2.\frac{3}{2}+\frac{9}{4}+\frac{8019}{4}\)

        \(A=2\left(x-y\right)^2+\left(x-\frac{3}{2}\right)^2+\frac{8019}{4}\ge\frac{8019}{4}\)

              Dấu = xảy ra khi \(\hept{\begin{cases}x-y=0\\x-\frac{3}{2}=0\end{cases}\Rightarrow}\hept{\begin{cases}x=y\\x=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)

Vậy Min A = \(\frac{8019}{4}\) khi \(x=y=\frac{3}{2}\)

18 tháng 6 2018

2xy.(3x^2y-4xy^2)-1/2x^2y^2.(12x-16y)+xy.(3-13xy)+13.(x^2y^2-1)

28 tháng 11 2018
https://i.imgur.com/2w0Ab4b.jpg