Cho hình thoi ABCD, \(\widehat{B}=50^o\). Lấy E là trung điểm của BC. Từ A hạ AF vuông góc với DE ( F thuộc DE ). Tính \(\widehat{DFC}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCNMHKIDE
a) Vì BI; CK cùng vuông góc với AM => BI // CK => góc MCK = góc MBI ( 2 góc so le trong)
mà có MB = MC (do M là TĐ của BC)
=> tam giác vuông MCK = MBI (cạnh huyền - góc nhọn)
=> BI = CK ( 2 canh t.ư)
+) tam giác BCK = CBI ( vì: BC chung; góc BCK = góc CBI; CK = BI)
=> BK = CI (2 cạnh t.ư)
và góc KBC = góc ICB ( 2 góc t.ư) mà 2 góc này ở vị trí SLT => BK // CI
b) Gọi E là trung điểm của MC
xét tam giác vuông MKC có: KE là trung tuyến ứng với cạnh huyền MC => EK = MC/ 2
Xét tam giác vuông MNC có: NE là trung tuyến ứng với cạnh huyền MC => NE = MC/2
Áp dụng bất đẳng thức tam giác trong tam giác KNE có: KN < EK + NE = MC/ 2 + MC/ 2 = MC
vậy KN < MC
c) +) ta luôn có: IM = MK (theo câu a) => M là trung điểm của IK
+) Nếu AI = IM mà A; I; M thẳng hàng => I là trung điểm của AM => BI là trung tuyến của tam giác BAM
mặt khác, BI vuông góc với AM
=> BI vừa là đường cao vừa là đường trung tuyến trong tam giác BAM => tam giác BAM cân tại B
=> BA = BM mà BM = MA (do AM là trung tuyến ứng với cạnh huyền BC)
=> tam giác BAM đều => góc BAM = 60o
+) ta có : MA = MD (gt) mà MA = IM + IA ; IM = MK
=> MD = MK + IA mà MD = MK + KD (do MI = MK < MA = MD => K nằm giữa M và D)
=> IA = KD
=> nếu AI = IM => AI = IM = MK = KD
vậy để AI = IM = MK = KD thì tam giác ABC là tam giác vuông có góc B = 60o
d) +) Tam giác MAC = tam giác MDB ( MA = MD ; góc AMC = góc DMB do đối đỉnh; MC = MB)
=> góc DBC = góc BCA mà 2 góc này ở vị trí SLT => BD // AC
lại có MN vuông góc với AC => MN vuông góc với BD => MN là là đường cao của tam giác BMD
+) Xét tam giác BMD có: BI ; DH ; MN là 3 đường cao => chúng đồng quy => đpcm
a,ta có;\(\widehat{E}=\widehat{F}\)(do \(DE=DF\)nên\(\Delta DEF\)cân tại D)mà\(\widehat{E}=50^0=>\widehat{F}=50^0\)
b.xét\(\Delta DEF\)cân tại D có(1)
DH là đường trung tuyến ứng với cạnh EF(do H là trung điểm của EF)(2)
từ (1) và(2)=>DH đồng thời là đường cao ứng với cạnh EF=>\(DH\perp EF\)tại H
c.xét\(\Delta DMH\)và\(\Delta DNH\)có
DM=DN(GT)
HM=HN(GT)
DM:chung
=>\(\Delta DMH=\Delta DNH\left(c-c-c\right)\)
=>\(\widehat{DMH}=\widehat{DNH}\)(hai góc tương ứng)
cau 1 :
Xet tam giac ABD va tam giac EBD co : BD chung
goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)
AB = BE (Gt)
=> tam giac ABD = tam giac EBD (c - g - c)
=> goc BAC = goc DEB (dn)
ma goc BAC = 90 do tam giac ABC vuong tai A (gt)
=> goc DEB = 90
=> DE _|_ BC (dn)
b, tam giac ABD = tam giac EBD (cau a)
=> AB = DE (dn)
AB = 6 (cm) => DE = 6 cm
DE _|_ BC => tam giac DEC vuong tai E
=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)
=> CE2 = 102 - 62
=> CE2 = 64
=> CE = 8 do CE > 0
Gọi I là tâm của ABCD.
Ta có:
\(\widehat{IFE}+\widehat{IFA}=90^0\)
\(\widehat{ICB}+\widehat{CBI}=90^0\)
Mặt khác: \(\widehat{IFA}=\widehat{BDA}=\widehat{CBI}\)
=> \(\widehat{IFE}=\widehat{ICB}\)
=> IFCE nội tiếp.
=> ^EFC = ^EIC = ^ECI = 900 - CBI = 650
=> ^DFC = 1800 - ^EFC = 1150
Vậy \(\widehat{DFC}=115^0\)