Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi câu a đề bài cho r nhé
phần b: tam giác DEF cân ở D và DH là phân giác suy ra DH đồng thời là đường cao nên DH vuông góc EF
còn phần c bạn chép lại đề cho mình nhé
Trên DE lấy điểm M, trên DF lấy điểm N sao cho DM = DN, vaf HM =HN. Chứng minh \(\widehat{DHN}=\widehat{DHN}\)
a) Do M là trung điểm của EF nên ME=MF=MD(đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền)
Suy ra \(\Delta MDE\) cân tại M.
\(\Rightarrow\widehat{E}=\widehat{EDM}\)
Ta có:\(\widehat{F}=90^0-\widehat{E}\)
\(\widehat{HDE}=90^0-\widehat{E}\)
\(\Rightarrow\widehat{F}=\widehat{HDE}\)
Mà \(\widehat{MDH}=\widehat{MDE}-\widehat{HDE}\)
\(\Rightarrow\widehat{MDH}=\widehat{E}-\widehat{F}\)
b) Trên EF lấy điểm K sao cho EK=ED
Trên DF lấy điểm I sao cho DI=DH
Khi đó:\(EF-DE=EF-EK=KF\)
\(DF-DH=DF-DI=IF\)
Ta cần chứng minh \(KF>IF\),thật vậy!
Ta có:\(EK=ED\)
\(\Rightarrow\Delta EDK\) cân tại E
\(\Rightarrow\widehat{EKD}=\widehat{EDK}\)
Ta lại có:\(\widehat{EDK}+\widehat{KDI}=90^0\)
\(\widehat{EKD}+\widehat{HDK}=90^0\)
Mà \(\widehat{EKD}=\widehat{EDK}\left(cmt\right)\)
\(\Rightarrow\widehat{KDI}=\widehat{HDK}\)
Xét \(\Delta DHK\&\Delta DIK\) có:
\(DH=DI\)(theo cách chọn điểm phụ)
\(\widehat{KDI}=\widehat{HDK}\left(cmt\right)\)
\(DK\) là cạnh chung
\(\Rightarrow\Delta DHK=\Delta DIK\left(c-g-c\right)\)
\(\Rightarrow\widehat{KID}=90^0\)
\(\Rightarrow\Delta FIK\) vuông tại I
\(\Rightarrow FK>FI^{đpcm}\)
a) Xét △DEM và △KFM có
DM=KM(giả thiết)
góc DME=góc KMF(2 góc đối đỉnh)
EM=MF(Vì M là trung điểm của EF)
=>△DEM =△KFM(c-g-c)
=> góc MDE=góc MKF (2 góc tương ứng)
hay góc EDK= góc EKD mà 2 góc này là 2 góc so le trong bằng nhau của đường thẳng DK cắt 2 đường thẳng DE và KF
=>DE//KF
b) ta có DH⊥EF hay DP⊥EF => góc DHE =góc PHE =90 độ
Xét △DHE (góc DHE=90 độ)△PHE(góc PHE=90 độ) có
HD=HP
HE là cạnh chung
=> △DHE= △PHE(2 cạnh góc vuông)
=> góc DEM=góc PEM
=> EH là tia phân giác của góc DEP
hay EF là tia phân giác của góc DEP
vậy EF là tia phân giác của góc DEP
a: Xét ΔDHE và ΔDHF có
DH chung
HE=HF
DE=DF
Do đó: ΔDHE=ΔDHF
b: Xét ΔDMH vuông tại M và ΔDNH vuông tại N có
DH chung
\(\widehat{MDH}=\widehat{NDH}\)
Do đó: ΔDMH=ΔDNH
Suy ra: DM=DN
a: Xét ΔDEM và ΔDFM có
DE=DF
DM chung
EM=FM
Do đó: ΔDEM=ΔDFM
a,ta có;\(\widehat{E}=\widehat{F}\)(do \(DE=DF\)nên\(\Delta DEF\)cân tại D)mà\(\widehat{E}=50^0=>\widehat{F}=50^0\)
b.xét\(\Delta DEF\)cân tại D có(1)
DH là đường trung tuyến ứng với cạnh EF(do H là trung điểm của EF)(2)
từ (1) và(2)=>DH đồng thời là đường cao ứng với cạnh EF=>\(DH\perp EF\)tại H
c.xét\(\Delta DMH\)và\(\Delta DNH\)có
DM=DN(GT)
HM=HN(GT)
DM:chung
=>\(\Delta DMH=\Delta DNH\left(c-c-c\right)\)
=>\(\widehat{DMH}=\widehat{DNH}\)(hai góc tương ứng)