K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

Ta có : \(S=\frac{989898.89-898989.98}{2^3+3^4+4^5+...+2014^{2015}}\)

\(=\frac{98\cdot10101\cdot89-89\cdot10101\cdot98}{2^3+3^4+4^5+...+2014^{2015}}\)

\(=\frac{10101\cdot\left(98\cdot89-89\cdot98\right)}{2^3+3^4+4^5+....+2014^{2015}}\)

\(=\frac{10101\cdot0}{2^3+3^4+4^5+....+2014^{2015}}=0\)

Vậy \(S=0\)

25 tháng 8 2020

\(S=\frac{989898.89-898989.98}{2^3+3^4+4^5+...+2014^{2015}}\)

\(=\frac{98\cdot10101\cdot89-89\cdot10101\cdot98}{2^3+3^4+4^5+...+2014^{2015}}\)

\(=\frac{10101\cdot\left(98\cdot89-89\cdot98\right)}{2^3+3^4+4^5+...+2014^{2015}}\)

\(=\frac{10101\cdot0}{2^3+3^4+4^5+...+2014^{2015}}\)

\(=0\)

4 tháng 5 2023

S = ( 1 - \(\dfrac{1}{2^2}\))(1-\(\dfrac{1}{3^2}\))(1-\(\dfrac{1}{4^2}\))....(1-\(\dfrac{1}{50^2}\))

S = \(\dfrac{2^2-1}{2^2}\).\(\dfrac{3^2-1}{3^2}\).\(\dfrac{4^2-1}{4^2}\)...\(\dfrac{50^2-1}{50^2}\)

Vì em lớp 6 nên phải làm thêm bước này nữa:

Ta có

n2 - 1 = n2 - n + n - 1 = (n2 - n) + (n - 1) = n(n-1) + (n-1) =(n-1)(n+1)

Áp dụng công thức vừa chứng minh trên vào tổng S ta có:

S = \(\dfrac{\left(2-1\right)\left(2+1\right)}{2^2}\).\(\dfrac{\left(3-1\right)\left(3+1\right)}{3^2}\)....\(\dfrac{\left(50-1\right)\left(50+1\right)}{50^2}\)

S = \(\dfrac{1.3}{2^2}\).\(\dfrac{2.4}{3^2}\)......\(\dfrac{49.51}{50^2}\)

S = \(\dfrac{\left(3.4.5.6....49\right)^2.1.2.50.51}{\left(3.4.5.6...49\right)^2.2.2.50.50}\)

S = \(\dfrac{1}{2}\) . \(\dfrac{51}{50}\)

S = \(\dfrac{51}{100}\)

4 tháng 5 2023

Em cảm ơn cô ạ1

 

26 tháng 1 2016

( - 2 )2016 - ( - 2 )0

26 tháng 1 2016

kho..................lam............................tich,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,minh..........................troi........................ret............................wa.................ung ho minh.................hu....................hu..............hu................hat..............hat....................s

21 tháng 10 2023

a) 1/5 - (1/2 + 3/4 ) : 5/2

= 1/5 - ( 1/4 + 3/4 ) : 5/2

=1/5 - 1 : 5/2

= 1/5 - 1 . 2/5

= 1/5 - 2/5

= -1/5

b) 1,5 . (1/3 - 2/3)

=3/2 . ( -1/3)

=-1/2

c) 9/10 . 23/11 - 1/11 . 9/10 + 9/10

= 9/10 . ( 23/11 - 1/11 ) + 9/10

= 9/10 . 1 + 9/10

= 9/10 + 9/10

= 18/10 = 9/5

29 tháng 7 2017

ĐK a>= 1

Đặt A = \(\sqrt{a+2\sqrt{a-1}}\)\(\sqrt{a-2\sqrt{a-1}}\)

\(\sqrt{a-1+2\sqrt{a-1}+1}\)\(\sqrt{a-1-2\sqrt{a-1}+1}\)

\(\sqrt{\left(\sqrt{a-1}+1\right)^2}\)\(\sqrt{\left(\sqrt{a-1}-1\right)^2}\)

\(\sqrt{a-1}\)+ 1 + |\(\sqrt{a-1}\)- 1|

Nếu a>=2 thì A = \(\sqrt{a-1}\)+1 + \(\sqrt{a-1}\)-1 = 2\(\sqrt{a-1}\)

Nếu a < 2 thì A= \(\sqrt{a-1}\)+ 1 +1 - \(\sqrt{a-1}\)=2

=309115699200

có 12 chữ số