K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:

Vì n chia cho 8 thì dư 7 => n - 7 chia hết cho 8

=> n - 7 + 8 chia hết cho 8

=> n + 1 chia hết cho 8 

=> n + 1 + 64 chia hết cho 8 

=> n + 65 chia hết cho 8 (1)

Vì n chia cho 31 thì dư 28 => n - 28 chia hết cho 31

=> n - 28 + 31 chia hết cho 31  

=> n + 3 chia hết cho 31

=> n + 3 + 62 chia hết cho 31

=> n + 65 chia hết cho 31 (2)

Từ (1) và (2) => n + 65 chia hết cho 8,31

=> n + 65 chia hết cho BCNN (8;31)

=> n + 65 chia hết cho 248

Vì \(n\le999\rightarrow n+65\le999+65=1064\)

Theo đề bài ta có n là số tự nhiên nên ta có: \(248k\le999\)(k lớn nhất)

=> k = 4

n + 65 = 248k => n + 65 = 992

=> n = 992 - 65 = 927

22 tháng 7 2015

 Theo bài ra ta có 
n = 8a +7=31b +28 
=> (n-7)/8 = a 
b= (n-28)/31 
a - 4b = (-n +679)/248 = (-n +183)/248 + 2 
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên 
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên ) 
=> n = 183 - 248d (với d là số nguyên <=0) 
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3 
=> n = 927

30 tháng 12 2015

tại sao lại dùng a-4b vậy ạ

1 tháng 1 2020

n chia 8 dư 7 ⇒⇒ (n+1) chia hết cho 8 

n chia 31 dư 28 nên (n+3) chia hết cho 31 

Ta có ( n+ 1) +64 chia hết cho 8 ( vì 64 chia hết cho 8) 

= (n+3) + 62 chia hết cho 31 

Vậy (n+65) vừa chia hết cho 31 và 8 

Mà (31,8) = 1( ước chung lớn nhất) 

⇒⇒ n+65 chia hết cho 248 

Ta thấy Vì n<=999 nên (n+65) ⇐⇐ 1064 

⇔⇔ (n+65)/ 248 <= 4,29 

Vì (n+65)/ 248 nguyên và n lớn nhất nên (n+65)/ 248 = 4 

⇒⇒ n= 927

1 tháng 1 2020

Gọi số cần tìm là n 

Theo đề bài ta có:

n=8a+7

n=31b+28

Với a,b nguyên dương

31b+28=8a+7\Leftrightarrow 8a=31b+21\Leftrightarrow a=\frac{31b+21}{8}

Mà do là số có 3 chữ số nên ta có:

100n999\Leftrightarrow \left\{\begin{matrix} 1008a+7999\\ 10031b+28 999\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 11,6a124\\ 2,33b31,32 \end{matrix}\right.

Do là số lớn nhất có 3 chữ số nên ta thử giá trị b từ 31 giảm dần nhận giá trị nào đầu tiên thì ta được b=29 thoả mãn

Vậy n=31b+28=31.29+28=927

7 tháng 12 2015

gọi số tự nhiên cần tìm là n ( n thuộc N ; n nhỏ hơn hoặc = 999)

n chia 8 dư 7 => ( n+1 ) chia hết cho 8

n chia 31 dư 28 => ( n+3) chia hết cho 31

ta có ( n+1 ) + 64 chia hết cho 8 = ( n+3 ) + 62 chia hết cho 31

vậy ( n+65 )chia hết cho 31 và 8

mà 31,8 = 1

=> n+65 chia hết cho 248

vì n nhỏ hơ hoặc = 999 nên ( n+65 ) nhỏ hơn hoặc = 1064

để n là số tự nhiên lớn nhát thỏa mãn điều kiện thì cũng phải là stn lớn nhất thỏa mãn => n+65 / 248 = 4

=.> n= 927

vậy số tự nhiên cần tìm là 927

22 tháng 11 2017

Theo bài ra ta có:

n = 8a +7=31b +28 
=> (n-7)/8 = a 
b= (n-28)/31 
a - 4b = (-n +679)/248 = (-n +183)/248 + 2 
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên 
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên ) 
=> n = 183 - 248d (với d là số nguyên <=0) 
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3 
=> n = 927

22 tháng 11 2017

dễ vaapyj cũng 0 biết làm.dốt thế

Theo đề bài ta có

n=8q+7

n=31p+28

=>8q+7=31p+28=>31p+21=8q=>7p+21 chia hết cho 8=>32p+16+5-p chia hết cho 8

=>5-p chia hết cho 8=>5-p=8k(k là số tự nhiên)=> p=5-8k

Để a là số lớn nhất thì p là số lớn nhất suy ra k là số tự nhiên nhỏ nhất suy ra k=0 suy ra p=5

Vậy số phải tìm là a=31.5+28=183

Hoặc Gọi số cần tìm là n=abc, điều kiện abc≤999 
Gọi lần lượt thương a, b 
n=8x+7 <=> max x≤122 
n=31y+28 <=> max yx≤31 
8x+7=31y+28 
8x=31y+21 
x=(31y+21)/8 
y=5 <=> x=22 , n=183 
y=13 <=> x=53, n=431 
y=21 <=> x=24, n=679 
y=29 <=> x=115, n=927 

Đáp số: 
927 

11 tháng 9 2015

ta co n=8k + 7

        n+ 65 = 8k + 7+65 = 8k+72 = 8(k+9)

n= 31l+28 

n+65 = 31l+28+65 = 31l + 93 = 31(k+3)

do do  n+65 chia het cho 8 va 31

suy ra n+65 thuoc 248, 496, 744, 992,...

vi n lon nhat co 3 chu so nen n+65 = 992

suy ra n= 992-65 = 927

29 tháng 8 2021

Bài 1: 
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2
​n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 ​chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53

Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9)
 ​chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) ​chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài

29 tháng 8 2021

Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).

Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài

Bài 2: 

Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).

Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m =  248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài