B=x√x−3x+3√x(x≥0)
tìm x để B = 9 và B=28
giúp với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(x^2-9=2\cdot\left(x+3\right)^2\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-2\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)\left[x-3-2\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-3-2x-6\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(-x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-9\end{matrix}\right.\)
b) \(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
d) \(x^2-8x+3x-24=0\)
\(\Leftrightarrow\left(x^2-8x\right)+\left(3x-24\right)=0\)
\(\Leftrightarrow x\left(x-8\right)+3\left(x-8\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=8\end{matrix}\right.\)
a) \(x^2-9=2\left(x+3\right)^2\)
\(\Leftrightarrow\left(x+3\right)\left(x-3\right)=2\left(x+3\right)^2\)
\(\Leftrightarrow2\left(x+3\right)^2-\left(x+3\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[2\left(x+3\right)-\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left[2x+6-x+3\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+9\right)=0\)
\(\)\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+9=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-9\end{matrix}\right.\)
b) \(x^2-8x+3x-24=0\)
\(\Leftrightarrow\left(x-8\right)x+3\left(x-8\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x+3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)
c) \(x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Bài 2:
a) xy = -28
\(\Rightarrow\)x, y \(\in\)Ư(-28)
Ta có: Ư(-28) \(\in\){\(\pm\)1; \(\pm\)2; \(\pm\)4; \(\pm\)7; \(\pm\)14; \(\pm\)28}
Lập bảng:
x | -1 | 1 | -2 | 2 | -4 | 4 | -7 | 7 | -14 | 14 | -28 | 28 |
y | 1 | -1 | 2 | -2 | 4 | -4 | 7 | -7 | 14 | -14 | 1 | -1 |
b) (2x - 1)(4x + 2) = -42
Câu này bạn lập bảng như câu a
c) x + y +xy = 9
\(\Leftrightarrow\)x(y + 1) + (y + 1) = 10
\(\Leftrightarrow\)(x + 1)(y + 1) = 10
\(\Leftrightarrow\)x + 1 và y + 1 \(\in\)Ư(10)
Ta có: Ư(10) \(\in\){\(\pm\)1; \(\pm\)2; \(\pm\)5; \(\pm\)10}
Lập bảng:
x + 1 | -1 | 1 | -2 | 2 | -5 | 5 | -10 | 10 |
y + 1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
x | -2 | 0 | -3 | 1 | -6 | 4 | -11 | 9 |
y | 0 | -2 | 1 | -3 | 4 | -6 | 9 | -11 |
d) xy + 3x - 7y = 2
\(\Leftrightarrow\)x(y + 3) - 7y - 21 = -19
\(\Leftrightarrow\)x(y + 3) - 7(y + 3) = -19
\(\Leftrightarrow\)(x - 7)(x + 3) = -19
Tự lập bảng
e) xy - 2x - 3y = 5
\(\Leftrightarrow\)x(y - 2) - 3y + 6 = 11
\(\Leftrightarrow\)x( y - 2) - 3(y - 2) = 11
\(\Leftrightarrow\)(x - 3)(y - 2) = 11
Tự lập bảng
g) xy + 3x -2y = 11
\(\Leftrightarrow\)x(y + 3) - 2y - 6 = 5
\(\Leftrightarrow\)x(y + 3) - 2(y + 3) = 5
\(\Leftrightarrow\)(x - 2)(y + 3) = 5
Tự lập bảng
Bài 1 : Tìm x :
a) (x - 2) (7 - x) > 0
th1 :
x - 2 > 0 và 7 - x > 0
=> x > 2 và -x > -7
=> x > 2 và x < 7
=> 2 < x < 7
th2 :
x - 2 < 0 và 7 - x < 0
=> x < 2 và -x < -7
=> x < 2 và x > 7
=> vô lí
b) (x + 3) (x - 2) < 0
tương tự câu a
a) (x - 140) : 7 = 33 - 23 . 3
(x - 140) : 7 = 27 - 8 . 3 = 27 - 24 = 3
x - 140 = 3 x 7 = 21
x = 21 + 140 = 161
b) x3 . x2 = 28 : 23
x5 = 25
=> x = 2
c) (x + 2) . ( x - 4) = 0
x = -2 hoặc 4
d) 3x-3 - 32 = 2 . 32 =
3x-3 - 9 = 2 . 9 = 18
3x-3 = 18 + 9 = 27
3x-3 = 33
=> x - 3 = 3
x = 3 + 3 = 6
a, Thay x = 25, ta tính được A = 10 7
b, Rút gọn được B =
2
x
-
3
c, Ta có A.B = 2 - 4 x + 2 => 2 + 2 ∈ Ư 4 . Từ đó tìm được x = 0, x = 4
`B=sqrtx/(sqrtx+3)+(2sqrtx)/(\sqrtx-3)-(3x+9)/(x-9)(x>0,x ne 9)`
`=(x-3sqrtx+2x+6sqrtx-3x-9)/(x-9)`
`=(3sqrtx-9)/(x-9)`
`=(3(sqrtx-3))/((sqrtx-3)(sqrtx+3))`
`=3/(sqrtx+3)`
`P=A.B=3/x`
`Px+3\sqrt{x-5}=x-2sqrtx+7(x>=5)`
`<=>3+3\sqrt{x-5}=x-2sqrtx+7`
`<=>x-2sqrtx+4-3\sqrt{x-5}=0`
`<=>2x-4sqrtx+8-6sqrt{x-5}=0`
`<=>x-4sqrtx+4+x-5-6sqrt{x-5}+9=0`
`<=>(sqrtx-2)^2+(\sqrt{x-5}-3)^2=0`
Dấu "=" xảy ra khi $\begin{cases}x=4\\x=14\\\end{cases}(l)$
Vậy khong có giá trị của x thể pt có nghiệm
\(\dfrac{1}{2}-3x+\left|x-1\right|=0\\ \Rightarrow3x+\left|x-1\right|=\dfrac{1}{2}-0\\ \Rightarrow3x+\left|x-1\right|=\dfrac{1}{2}\\ \Rightarrow\left|x-1\right|=\dfrac{1}{2}-3x\\ \Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{2}-3x\\x-1=-\dfrac{1}{2}+3x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x+3x=\dfrac{1}{2}+1\\x-3x=-\dfrac{1}{2}+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}4x=\dfrac{3}{2}\\2x=\dfrac{1}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{8}\\x=\dfrac{1}{4}\end{matrix}\right.\)
__
\(\dfrac{1}{2}\left|2x-1\right|+\left|2x-1\right|=x+1\\ \Rightarrow\left|2x-1\right|\cdot\left(\dfrac{1}{2}+1\right)=x+1\\ \Rightarrow\left|2x-1\right|\cdot\dfrac{3}{2}=x+1\\ \Rightarrow\left|2x-1\right|=x+1:\dfrac{3}{2}\\ \Rightarrow\left|2x-1\right|=x+\dfrac{2}{3}\\ \Rightarrow\left[{}\begin{matrix}2x-1=x+\dfrac{2}{3}\\2x-1=-x-\dfrac{2}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-x=\dfrac{2}{3}+1\\2x+x=-\dfrac{2}{3}+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\3x=\dfrac{1}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{1}{9}\end{matrix}\right.\)
a, Từ x = 7 - 4 3 tìm được x = 2 - 3 . Thay vào Q và tính ta được Q = 3 - 3 1 + 3
b, P = 3 x + 3 9 - x
c, Tìm được
M
=
P
Q
=
-
3
x
+
3
Giải M ≥ - 2 3 ta tìm được 9 4 ≤ x ≠ 9
d, Tìm được A = x + 7 x + 3
Ta có A = x + 1 + 6 x + 3 ≥ 2 x + 6 x + 3 = 2
Từ đó đi đến kết luận A m i n = 2 => x = 1
* Cách khác: A = x + 7 x + 3 = x - 3 + 16 x + 3
= x + 3 + 16 x + 3 - 6 ≥ 2 16 - 6 = 2
=> Kết luận
a: \(A=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\dfrac{-3\sqrt{x}-9}{x-9}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}-3}\)
b: A=1/3
=>\(\dfrac{-3}{\sqrt{x}-3}=\dfrac{1}{3}\)
=>căn x-3=-9
=>căn x=-6(loại)
c: căn x-3>=-3
=>3/căn x-3<=-1
=>-3/căn x-3>=1
Dấu = xảy ra khi x=0
B=x√x−3x+3√x(x≥0)