Tìm x, bt:
x4+x3+3x2+2x+2=0
Ai trl đúng, nhanh hứa tk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{-3}{2x}+\frac{1}{4}\right):\frac{1}{6}=\frac{-3}{2}\)
\(\Rightarrow\frac{-3}{2x}+\frac{1}{4}=\frac{-3}{2}.\frac{1}{6}=-\frac{1}{4}\)
\(\Rightarrow\frac{-3}{2x}=-\frac{1}{4}-\frac{1}{4}=-\frac{1}{2}\)
\(\Rightarrow\frac{-3}{2x}=\frac{-3}{6}\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
(-3/2x + 0,25) : 1/6 = -3/2
=> -3/2x + 0,25 = -3/2 . 1/6
=> -3/2x + 0,25 = -1/4
=> -3/2x = -1/4 - 0,25
=> -3,2x = -1/2
=> x = -1/2 : (-3/2)
=> x = 1/3
Lời giải:
a. $P(x)=x^3+3x^2-2x+2019-(3x^2-2x)=x^3+2019$
b.
$Q(2)=-2^3+2-22=-28$
c.
$P(x)+Q(x)=x^3+2019+(-x^3+x-2022)=x-3$
$P(x)+Q(x)=0$
$x-3=0$
$x=3$
Vậy nghiệm của đa thức là $x=3$
a , | 4x + 2020 | = 0
b , | 2x + 1/4 | + | -5 | = | -14 |
c , | 2020 - 5x | - | 3 | = - | -8 |
d , | x mũ 2 + 4x | = 0
e , | x-1 | + 3x = 1
g , | 2-3x | + 3x = 2
h , | 5x-4 | + 5x = 4
i , | x - 1/4 | - | 2x + 5 | = 0
k , | 5x - 7 | - | 8-5x | = 0
n , | x mũ 3 -
`P(x)=\(4x^2+x^3-2x+3-x-x^3+3x-2x^2\)
`= (x^3-x^3)+(4x^2-2x^2)+(-2x-x+3x)+3`
`= 2x^2+3`
`Q(x)=`\(3x^2-3x+2-x^3+2x-x^2\)
`= -x^3+(3x^2-x^2)+(-3x+2x)+2`
`= -x^3+2x^2-x+2`
`P(x)-Q(x)-R(x)=0`
`-> P(X)-Q(x)=R(x)`
`-> R(x)=P(x)-Q(x)`
`-> R(x)=(2x^2+3)-(-x^3+2x^2-x+2)`
`-> R(x)=2x^2+3+x^3-2x^2+x-2`
`= x^3+(2x^2-2x^2)+x+(3-2)`
`= x^3+x+1`
`@`\(\text{dn inactive.}\)
a: P(x)-Q(x)-R(x)=0
=>R(x)=P(x)-Q(x)
=2x^2+3+x^3-2x^2+x-2
=x^3+x+1
a, \(A=2x^3-9x^5+3x^5-3x^2+7x^2-12=-6x^5+2x^3+4x^2-12\)
b, \(B=2x^4+x^2+2x-2x^3-2x^2+x^2-2x+1=2x^4-2x^3+1\)
c, \(C=2x^2+x-x^3-2x^2+x^3-x+3=3\)
\(x^4+x^3+3x^2+2x+2=0\)
\(\Leftrightarrow x^4-x^3+x^2+2x^2-2x+2\)
\(\Leftrightarrow x^2\left(x^2-x+1\right)+2\left(x^2-x+1\right)\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2-x+1\right)\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)
\(\Leftrightarrow\left(x^2+2\right)\left[x-\frac{1}{2}^2\right]+\frac{3}{4}\)
Ta co: \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>\frac{3}{4}\)
\(\left(x^2+2\right)\left[\left(x-\frac{1}{2}^2\right)+\frac{3}{4}\right]\ge\frac{3}{2}\le0\)