cho tam giác ABC cân tại A. Một đường thẵng song song với cạnh BC, cắt AB và AC lần lượt tại Mvà N.
a. chứng minh:AM=AN
Chứng minh:AMN=ANM
VẼ HÌNH và làm giúp mình với !!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
mà \(\widehat{DBC}=\widehat{ECB}\)
nên BDEC là hình thang cân
b1 :
DE // AB
=> góc ABC = góc DEC (đồng vị)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
=> góc DEC = góc ACB
=> tam giác DEC cân tại D (dh)
b2:
a, tam giác ABC => góc A + góc B + góc C = 180 (đl)
góc A = 80; góc B = 50
=> góc C = 50
=> góc B = góc C
=> tam giác ABC cân tại A (dh)
b, DE // BC
=> góc EDA = góc ABC (slt)
góc DEA = góc ECB (dlt)
góc ABC = góc ACB (Câu a)
=> góc EDA = góc DEA
=> tam giác DEA cân tại A (dh)
a: góc BAC=góc BCA
=>sđ cung BC=sđ cung BA
b: xy//DE
=>góc AED=góc yAE=góc ABC
c: góc AED=góc ABC
=>góc ABC+góc DEC=180 độ
=>BCDE nội tiếp
a) Xét ΔABC có
D∈AB(gt)
E∈AC(gt)
Do đó: \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(Hệ quả của Định lí Ta lét)
⇒\(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
mà \(\dfrac{AB}{AC}=1\)(AB=AC)
nên \(\dfrac{AD}{AE}=1\)
hay AD=AE
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
SABC = SDEFG + SBED + SGEF +SADG
SABC = SDEFG khi d tịnh tiến trùng với A