Chứng tỏ rằng:
\(S = 1 + 5 + 5^2 + 5^3 + 5^4 + ...+ 5^{2017}\) chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
Ta có :
\(S=5+5^2+5^3+...+5^{2016}+5^{2017}\)
\(=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2013}+5^{2014}+5^{2015}+5^{2016}\right)+5^{2017}\)
\(=\left(5+5^2+5^3+5^4\right)+5^4\left(5+5^2+5^3+5^4\right)+...+5^{2012}\left(5+5^2+5^3+5^4\right)+5^{2017}\)
\(=\left(1+5^4+5^8+...+5^{2012}\right)\left(5+5^2+5^3+5^4\right)+5^{2017}\)
\(=\left(1+5^4+5^8+...+5^{2012}\right).65.12+5^{2017}\)
Ta có :
\(5^4\text{≡}1\left(mod13\right)\)
\(\Rightarrow\left(5^4\right)^{504}\text{≡}1^{504}\left(mod13\right)\)
\(\Rightarrow5^{2016}\text{≡}\left(mod13\right)\)
\(\Rightarrow5^{2017}\text{≡}5\left(mod13\right)\)
Lại có :
\(\left(1+5^4+5^8+...+5^{2012}\right).65.12\text{ }\text{⋮}65\)
\(5^{2017}\)không chia hết cho 65
\(\Rightarrow\left(1+5^4+5^8+...+5^{2012}\right).65.12+5^{2017}\)không chia hết cho 65
\(\Rightarrow S\)không chia hết cho 65
Vậy \(S\)không chia hết cho 65
\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2015}+5^{2016}\right)+5^{2017}\)
\(S=130+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+...+5^{2014}\left(5+5^2\right)+5^{2017}\)
\(S=130+5^2.130+5^4.130+...+5^{2014}.130+5^{2017}\)
\(S=130\left(1+5^2+5^4+...+5^{2014}\right)+5^{2017}\)
Vì \(S=130\left(1+5^2+5^4+...+5^{2014}\right)\)chia hết cho 65 nhưng \(5^{2017}\)không chia hết cho 65
=> \(S=130\left(1+5^2+5^4+...+5^{2014}\right)+5^{2017}\)không chia hết cho 65
Vậy \(5+5^2+5^3+5^4+5^5+...+5^{2017}\)Không chia hết cho 65
1/5 S = 1+5+5^2+...+5^2012
=1(1+5+5^2)+5^3(1+5+5^2)+...+5^2010(1+5+5^2)
mà 1+5+5^2=31=>1+5+5^2 chia hết 31
=> mổi số hạng của 1/5 S chia hết 31
=> S chia hết 31
Học chuyên đó ak. bài zễ thế nài mà ko bt làm ntn hả
ta có : S=5+5^2+5^3+5^4+......+5^2013 ( có 2013 số hạng )
S=(5+5^2+5^3)+(5^4+5^5+5^6)+.............+(5^2011+5^2012+5^2013) ( có 671 nhóm)
S= 5.(1+5+5^2)+5^2.(1+5+5^2)+........+5^2011.(1+5+5^2)
S=(5+5^2+.....+5^2011).31
S chia hết cho 31
S = (1+5)+(5^2+5^3)+(5^4+5^5)+(5^6+5^7)
= 6+5^2.(1+5)+5^4.(1+5)+5^6.(1+5)
= 6+5^2.6+5^4.6+5^6.6
= 6.(1+5^2+5^4+5^6) chia hết cho 6
=> ĐPCM
k mk nha
(1+5)+(5^2+5^3)+........+(5^6+5^7)
=6+5^2(1+5)+......+5^6(1+5)
=6+5^2 . 6 +.....+5^6 . 6
= 6 ( 5^2+.....+5^6)
Suy ra S chia hết cho 6
\(2^{2017}\) có chữ số tận cùng là 8
\(3^{2017}\) có chữ số tận cùng là 7
nên \(2^{2017}+3^{2017}\) có chữ số tận cùng là 5
nên chúng chia hết cho 5
M = 5 + 52 + 53 + ... + 52012.
= ( 5+1 ).52 + ( 5+1 ). 53 +...+( 5+1 ). 5 80
=6. 52 + 6. 53 + ...+ 6. 5 80
=\(6\).52.53x...x5 80
Vậy M chia hết cho 6.
\(S=5+5^2+5^3+5^4+...+5^{2022}\)
\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+...+\left(5^{2021}+5^{2022}\right)\)
\(S=\left(5+5^2\right)+5^2\cdot\left(5+5^2\right)+5^4\cdot\left(5+5^2\right)+...+5^{2020}\cdot\left(5+5^2\right)\)
\(S=\left(5+5^2\right)\left(1+5^2+5^4+...+5^{2020}\right)\)
\(S=30\left(1+5^2+5^4+...+5^{2020}\right)\)
Vậy S chia hết cho 30
a) \(S=5+5^2+5^3+5^4+...+5^{99}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(=5.31+5^4.31+...+5^{97}.31\)
\(=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
b) \(S=5+5^2+5^3+5^4+...+5^{99}\)
\(=5+\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{98}+5^{99}\right)\)
\(=5+5\left(5+5^2\right)+5^3\left(5+5^2\right)+...+5^{97}\left(5+5^2\right)\)
\(=5+5.30+5^3.30+...+5^{97}.30\)
\(=5+30.\left(5+5^3+...+5^{97}\right)\)
Mà \(5⋮̸30\) nên \(S⋮̸30\left(đpcm\right)\)
c) Ta có: \(5S=5^2+5^3+5^4+5^5+...+5^{100}\)
\(5S-S=\left(5^2+5^3+5^4+5^5+...+5^{100}\right)-\left(5+5^2+5^3+5^4+...+5^{99}\right)\)
\(4S=5^{100}-5\)
\(\Rightarrow25^x-5=5^{100}-5\)
\(\Rightarrow25^x=5^{100}\)
\(\Rightarrow25^x=25^{50}\)
\(\Rightarrow x=50\)
\(S=1+5+5^2+5^3+.......+5^{2017}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+......+\left(5^{2016}+5^{2017}\right)\)
\(=6+5^2\left(1+5\right)+.........+5^{2016}\left(1+5\right)\)
\(=6+5^2.6+.......+5^{2016}.6=6\left(1+5^2+......+5^{2016}\right)⋮3\)
S=1+5+52+53+54+....+52017
S=(1+5)+(52+53)+(54+55)+.....+(52016+52017)
S=(1+5)+52.(1+5)+54.(1+5)+...+52016.(1+5)
S=6+52.6+54.6+...+52016.6
S=6.(1+52+54+...+52016)
S=2.3.(1+52+54+...+52016)\(⋮\)3
Chúc bn học tốt