cho biểu thức \(A=\frac{1}{x+2}+\frac{1}{x-2}+\frac{x^2+1}{x^2+4}\)(với \(x\ne\pm2\))
- rút gọn biểu thức A
- chứng tỏ rằng với mọi x thỏa mãn \(-2< x< 2,x\ne-1\)biểu thức A luôn có giá trị âm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,Đkxđ:x\ne\pm2\)
\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)
\(=\frac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x+1\right)^2}{x^2-4}\)
b, Ta có: \(\left(x-2\right)\left(x+2\right)< 0;\forall-2< 2< 2;x\ne-1\)
Mà: \(\left(x+1\right)^2>0\left(\forall x\ne-1\right)\)
\(\Rightarrow\frac{\left(x+1\right)^2}{\left(x+2\right)\left(x-2\right)}< 0;\forall-2< x< 2;x\ne-1\)
Vậy ............
\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)
Với \(-2< x< 2\Leftrightarrow\left\{{}\begin{matrix}x-2< 0\\x+2>0\end{matrix}\right.\Leftrightarrow\left(x-2\right)\left(x+2\right)< 0;x\ne-1\Leftrightarrow\left(x+1\right)^2>0\Leftrightarrow A< 0\)
\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+2x+1}{x^2-4}\)
a) \(A= \dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4} \\ =\dfrac{1}{x-2}+\dfrac{1}{x-2}+\dfrac{x^2+1}{(x-2)(x+2)} \\= \dfrac{x+2+x-2+x^2+1}{(x-2)(x+2)} \\=\dfrac{x^2+2x+1}{x^2-4} \\ =\dfrac{(x+1)^2}{(x-2)(x+2)}\)
b) Với mọi \(x\) thỏa mãn \(-2<x<2\) và \(x \ne -1\) thì \(x-2\) đều có giá trị âm, mà \(\begin{cases}(x+1)^2≥0\\x+2>0\\\end{cases}\) \( \Rightarrow\) Biểu thức A luôn có giá trị âm.
\(a,A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\left(dkxd:x\ne\pm2\right)\)
\(=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{\left(x+1\right)^2}{x^2-4}\)
Vậy \(A=\dfrac{\left(x+1\right)^2}{x^2-4}\)
\(b,\) Theo đề, ta có : \(-2< x< 2\)
\(\Rightarrow x-2< 0;x+2>0;\left(x+1\right)^2>0\)
\(\Rightarrow A< 0\) hay phân thức luôn có giá trị âm
a) \(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)(với \(x\ne\pm2;x\ne-1\))
\(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{-\left(6-5x\right)}{x^2-4}\right):\frac{x+1}{x-2}\)
\(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{5x-6}{\left(x+2\right)\left(x-2\right)}\right):\frac{x+1}{x-2}\)
\(M=\left(\frac{4\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{5x-6}{\left(x+2\right)\left(x-2\right)}\right):\frac{x+1}{x-2}\)
\(M=\frac{4\left(x-2\right)+2\left(x+2\right)-5x+6}{\left(x+2\right)\left(x-2\right)}:\frac{x+1}{x-2}\)
\(M=\frac{4x-8+2x+4-5x+6}{\left(x+2\right)\left(x-2\right)}:\frac{x+1}{x-2}\)
\(M=\frac{x+2}{\left(x+2\right)\left(x-2\right)}:\frac{x+1}{x-2}\)
\(M=\frac{1}{x-2}:\frac{x+1}{x-2}=\frac{1}{x-2}\cdot\frac{x-2}{x+1}=\frac{1}{x+1}\)
b) Với \(M=\frac{1}{4}\)ta có :
\(M=\frac{1}{x+1}\Rightarrow\frac{1}{4}=\frac{1}{x+1}\)
\(\Rightarrow1\left(x+1\right)=4\Rightarrow x+1=4\Rightarrow x=3\)
Vậy x = 3
a, \(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)
\(=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{\left(2-x\right)\left(x+2\right)}\right):\frac{x+1}{x-2}\)
\(=\left(\frac{4\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{6-5x}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x-2}\)
\(=\frac{4x-8+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}:\frac{x+1}{x-2}\)
\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}:\frac{x+1}{x-2}=\frac{1}{x-2}.\frac{x-2}{x+1}=\frac{1}{x+1}\)
b, Ta có : M = 1/4 hay \(\frac{1}{x+1}=\frac{1}{4}\Leftrightarrow4=x+1\Leftrightarrow x=3\)
Bài làm
a) \(P=\left(\frac{x}{x-2}+\frac{1}{x^2-4}\right):\frac{x+1}{x+2}\)
\(P=\left(\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)
\(P=\left(\frac{x^2+2x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)
\(P=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}:\frac{x+1}{x+2}\)
\(P=\frac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{x+1}\)
\(P=\frac{x+1}{x-2}\)
b) Thay \(x=\frac{1}{2}\)vào P ta được:
\(P=\frac{\frac{1}{2}+1}{\frac{1}{2}-2}\)
\(P=\frac{\frac{1}{2}+\frac{2}{2}}{\frac{1}{2}-\frac{2}{2}}\)
\(P=\frac{3}{2}:\frac{-1}{2}\)
\(P=\frac{3}{2}.\left(-2\right)\)
\(P=-3\)
Vậy giá trị của \(P=-3\) tại \(x=\frac{1}{2}\)
a) \(P=\left(\frac{x}{x-2}+\frac{1}{x^2-4}\right):\frac{x+1}{x+2}\left(x\ne-1;x\ne\pm2\right)\)
\(\Leftrightarrow P=\left(\frac{x}{x-2}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)
\(\Leftrightarrow P=\left(\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)
\(\Leftrightarrow P=\left(\frac{x^2+2x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)
\(\Leftrightarrow P=\frac{x^2+2x+1}{\left(x+2\right)\left(x-2\right)}\cdot\frac{x+2}{x+1}\)
\(\Leftrightarrow P=\frac{\left(x+1\right)^2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(x+1\right)}=\frac{x+1}{x-2}\)
Vậy \(P=\frac{x+1}{x-2}\left(x\ne-1;x\ne\pm2\right)\)
b) Ta có \(P=\frac{x+1}{x-2}\left(x\ne-1;x\ne\pm2\right)\)
Thay x=\(\frac{1}{2}\left(tm\right)\)vào P ta có:
\(P=\frac{\frac{1}{2}+1}{\frac{1}{2}-2}=\frac{\frac{1}{2}+\frac{2}{2}}{\frac{1}{2}-\frac{4}{2}}=\frac{\frac{3}{2}}{\frac{-3}{2}}=\frac{3}{2}:\frac{-3}{2}=-1\)
Vậy \(P=-1\)khi x=\(\frac{1}{2}\)
\(A=\frac{1}{x+2}+\frac{1}{x-2}+\frac{x^2+1}{x^2-4}\)
\(=\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2+1}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)
Với \(\forall x\in\left[-2;2\right]\) thì \(\left(x-2\right)\left(x+2\right)< 0\Rightarrow\frac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}< 0\Rightarrow A< 0\)