K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2019

\(A=\frac{1}{x+2}+\frac{1}{x-2}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)

Với \(\forall x\in\left[-2;2\right]\) thì \(\left(x-2\right)\left(x+2\right)< 0\Rightarrow\frac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}< 0\Rightarrow A< 0\)

2 tháng 2 2020

\(a,Đkxđ:x\ne\pm2\)

\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{\left(x+1\right)^2}{x^2-4}\)

b, Ta có: \(\left(x-2\right)\left(x+2\right)< 0;\forall-2< 2< 2;x\ne-1\)

Mà: \(\left(x+1\right)^2>0\left(\forall x\ne-1\right)\)

\(\Rightarrow\frac{\left(x+1\right)^2}{\left(x+2\right)\left(x-2\right)}< 0;\forall-2< x< 2;x\ne-1\)

Vậy ............

19 tháng 12 2021

\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)

Với \(-2< x< 2\Leftrightarrow\left\{{}\begin{matrix}x-2< 0\\x+2>0\end{matrix}\right.\Leftrightarrow\left(x-2\right)\left(x+2\right)< 0;x\ne-1\Leftrightarrow\left(x+1\right)^2>0\Leftrightarrow A< 0\)

19 tháng 12 2021

\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+2x+1}{x^2-4}\)

1 tháng 1 2021

a)  \(A= \dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4} \\ =\dfrac{1}{x-2}+\dfrac{1}{x-2}+\dfrac{x^2+1}{(x-2)(x+2)} \\= \dfrac{x+2+x-2+x^2+1}{(x-2)(x+2)} \\=\dfrac{x^2+2x+1}{x^2-4} \\ =\dfrac{(x+1)^2}{(x-2)(x+2)}\)

b) Với mọi \(x\) thỏa mãn \(-2<x<2\) và \(x \ne -1\) thì \(x-2\) đều có giá trị âm, mà \(\begin{cases}(x+1)^2≥0\\x+2>0\\\end{cases}\) \( \Rightarrow\) Biểu thức A luôn có giá trị âm.

21 tháng 1 2023

\(a,A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\left(dkxd:x\ne\pm2\right)\)

\(=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{\left(x+1\right)^2}{x^2-4}\)

Vậy \(A=\dfrac{\left(x+1\right)^2}{x^2-4}\)

\(b,\) Theo đề, ta có : \(-2< x< 2\) 

\(\Rightarrow x-2< 0;x+2>0;\left(x+1\right)^2>0\)

\(\Rightarrow A< 0\) hay phân thức luôn có giá trị âm

 

11 tháng 12 2020

a) \(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)(với \(x\ne\pm2;x\ne-1\))

\(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{-\left(6-5x\right)}{x^2-4}\right):\frac{x+1}{x-2}\)

\(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{5x-6}{\left(x+2\right)\left(x-2\right)}\right):\frac{x+1}{x-2}\)

\(M=\left(\frac{4\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{5x-6}{\left(x+2\right)\left(x-2\right)}\right):\frac{x+1}{x-2}\)

\(M=\frac{4\left(x-2\right)+2\left(x+2\right)-5x+6}{\left(x+2\right)\left(x-2\right)}:\frac{x+1}{x-2}\)

\(M=\frac{4x-8+2x+4-5x+6}{\left(x+2\right)\left(x-2\right)}:\frac{x+1}{x-2}\)

\(M=\frac{x+2}{\left(x+2\right)\left(x-2\right)}:\frac{x+1}{x-2}\)

\(M=\frac{1}{x-2}:\frac{x+1}{x-2}=\frac{1}{x-2}\cdot\frac{x-2}{x+1}=\frac{1}{x+1}\)

b) Với \(M=\frac{1}{4}\)ta có :

\(M=\frac{1}{x+1}\Rightarrow\frac{1}{4}=\frac{1}{x+1}\)

\(\Rightarrow1\left(x+1\right)=4\Rightarrow x+1=4\Rightarrow x=3\)

Vậy x = 3

11 tháng 12 2020

a, \(M=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)

\(=\left(\frac{4}{x+2}+\frac{2}{x-2}-\frac{6-5x}{\left(2-x\right)\left(x+2\right)}\right):\frac{x+1}{x-2}\)

\(=\left(\frac{4\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{6-5x}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x-2}\)

\(=\frac{4x-8+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}:\frac{x+1}{x-2}\)

\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}:\frac{x+1}{x-2}=\frac{1}{x-2}.\frac{x-2}{x+1}=\frac{1}{x+1}\)

b, Ta có : M = 1/4 hay \(\frac{1}{x+1}=\frac{1}{4}\Leftrightarrow4=x+1\Leftrightarrow x=3\)

Bài làm

a) \(P=\left(\frac{x}{x-2}+\frac{1}{x^2-4}\right):\frac{x+1}{x+2}\)

\(P=\left(\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)

\(P=\left(\frac{x^2+2x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)

\(P=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}:\frac{x+1}{x+2}\)

\(P=\frac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{x+1}\)

\(P=\frac{x+1}{x-2}\)

b) Thay \(x=\frac{1}{2}\)vào P ta được:

\(P=\frac{\frac{1}{2}+1}{\frac{1}{2}-2}\)

\(P=\frac{\frac{1}{2}+\frac{2}{2}}{\frac{1}{2}-\frac{2}{2}}\)

\(P=\frac{3}{2}:\frac{-1}{2}\)

\(P=\frac{3}{2}.\left(-2\right)\)

\(P=-3\)

Vậy giá trị của \(P=-3\) tại \(x=\frac{1}{2}\)

5 tháng 5 2020

a) \(P=\left(\frac{x}{x-2}+\frac{1}{x^2-4}\right):\frac{x+1}{x+2}\left(x\ne-1;x\ne\pm2\right)\)

\(\Leftrightarrow P=\left(\frac{x}{x-2}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)

\(\Leftrightarrow P=\left(\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)

\(\Leftrightarrow P=\left(\frac{x^2+2x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x-2\right)\left(x+2\right)}\right):\frac{x+1}{x+2}\)

\(\Leftrightarrow P=\frac{x^2+2x+1}{\left(x+2\right)\left(x-2\right)}\cdot\frac{x+2}{x+1}\)

\(\Leftrightarrow P=\frac{\left(x+1\right)^2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(x+1\right)}=\frac{x+1}{x-2}\)

Vậy \(P=\frac{x+1}{x-2}\left(x\ne-1;x\ne\pm2\right)\)

b) Ta có \(P=\frac{x+1}{x-2}\left(x\ne-1;x\ne\pm2\right)\)

Thay x=\(\frac{1}{2}\left(tm\right)\)vào P ta có:

\(P=\frac{\frac{1}{2}+1}{\frac{1}{2}-2}=\frac{\frac{1}{2}+\frac{2}{2}}{\frac{1}{2}-\frac{4}{2}}=\frac{\frac{3}{2}}{\frac{-3}{2}}=\frac{3}{2}:\frac{-3}{2}=-1\)

Vậy \(P=-1\)khi x=\(\frac{1}{2}\)