K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2023

a) Xét 2 tam giác vuông BAM và CAN có:

\(\widehat{BAM} = \widehat{CAM}(=90^0)\)

AB=AC (Do tam giác ABC cân tại A)

\(\widehat B = \widehat C\) (Do tam giác ABC cân tại A)

=>\(\Delta BAM = \Delta CAN\)(g.c.g)

b) Cách 1: 

Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:

\(\widehat B = \widehat C = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\).

Xét tam giác ABM vuông tại A có:

\(\widehat {B} + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\\ \Rightarrow \widehat {AMC} = {180^o} - \widehat {AMB} = {180^o} - {60^o} = {120^o}\)

Xét tam giác MAC có:

\(\begin{array}{l}\widehat {AMC} + \widehat {MAC} + \widehat C = {180^o}\\ \Rightarrow {120^o} + \widehat {MAC} + {30^o} = {180^o}\\ \Rightarrow \widehat {MAC} = {30^o} = \widehat C\end{array}\)

\(\Rightarrow \) Tam giác AMC cân tại M.

Vì \(\Delta BAM = \Delta CAN\)

=> BM=CN ( 2 cạnh tương ứng)

=> BM+MN=CN+NM

=> BN=CM

Xét 2 tam giác ANB và AMC có:

AB=AC (cmt)

\(AN = AM\)(do \(\Delta BAM = \Delta CAN\))

BN=MC (cmt)

=>\(\Delta ANB = \Delta AMC\)(c.c.c)

Mà tam giác AMC cân tại M.

=> Tam giác ANB cân tại N.

Cách 2: 

Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:

\(\widehat B = \widehat C = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\).

Xét tam giác ABM vuông tại A có:

\(\widehat B + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\)

Vì \(\Delta BAM = \Delta CAN\) nên AM = AN (2 cạnh tương ứng)

=> \(\Delta AMN\) đều (Tam giác cân có 1 góc bằng 60 độ)

=> \(\widehat {NAM}=60^0\)

Ta có: \(\widehat{BAN}+\widehat{NAM}=\widehat{BAM}\)

=> \(\widehat{BAN} + 60^0=90^0\)

=> \(\widehat{BAN}=30^0\)

Xét tam giác ABN có \(\widehat{BAN}=\widehat{ABN}(=30^0\) nên \(\Delta ABN\) cân tại N.

Ta có: \(\widehat{CAM}+\widehat{NAM}=\widehat{CAN}\)

=> \(\widehat{CAM} + 60^0=90^0\)

=> \(\widehat{CAM}=30^0\)

Xét tam giác ACM có \(\widehat{CAM}=\widehat{ACM}(=30^0\) nên \(\Delta ACM\) cân tại M.

20 tháng 1 2018

Do ∆ABC cân tại A=> góc B= góc C

Mà góc A=50°=> góc B=góc C= (180°-50°)/2=65°

20 tháng 1 2018

vì tg ABC cân tại A

    =>góc B = góc C

   * Xét tg ABC có : góc A + góc B + góc C =180 độ

                   mà  góc A =50 độ

                                       => góc B + góc C =180 độ -50 độ

                                       => góc B + góc C =130 độ

                  lại có : góc B = góc C (cmt)

                                        =>góc B = góc C=130 độ :2

                                        => góc B = góc C= 65 độ

                                        =>đpcm

21 tháng 6 2018

Bài 1:

Gọi M là trung điểm của BC

Vẽ BE là tia phân giác của góc B, E  thuộc AC

nối M với E

ta có: BM =CM  = 1/2.BC ( tính chất trung điểm)

AB=1/2.BC (gt)

=> BM = CM=  AB ( =1/2.BC)

Xét tam giác ABE và tam giác MBE

có: AB = MB (chứng minh trên)

góc ABE = góc MBE (gt)

BE là cạnh chung

\(\Rightarrow\Delta ABE=\Delta MBE\left(c-g-c\right)\)

=> góc BAE = góc BME = 90 độ ( 2 cạnh tương ứng)

=> góc BME = 90 độ

\(\Rightarrow BC\perp AM⋮M\)

Xét tam giác BEM vuông tại M và tam giác CEM vuông tại M

có: BM=CM(gt)

EM là cạnh chung

\(\Rightarrow\Delta BEM=\Delta CEM\left(cgv-cgv\right)\)

=> góc EBM = góc ECM ( 2 cạnh tương ứng)

mà góc EBM = góc ABE = 1/2. góc B (gt)

=> góc EBM = góc ABE = góc ECM

Xét tam giác ABC vuông tại A
có: \(\widehat{B}+\widehat{ECM}=90^0\) ( 2 góc phụ nhau)

=> góc EBM + góc ABE + góc ECM = 90 độ

=> góc ECM + góc ECM + góc ECM = 90 độ

=> 3.góc ECM = 90 độ

góc ECM = 90 độ : 3

góc ECM = 30 độ

=> góc C = 30 độ

13 tháng 10 2019

KINH THÌ KỆ MẸ T

14 tháng 6 2018

a, Xét ∆ ABC có đg ttrực của AB và AC giao nhau tại O

➡️O là tâm đg tròn ngoại tiếp ∆ ABC 

➡️AO là đg ttrực của BC (đpcm)

b, Gọi giao điểm của AO là BC là H.

Xét ∆ ABC cân tại A

➡️AO là đg ttrực đồng thời là đg phân giác

➡️Góc BAO = góc CAO = góc BAC ÷ 2 = 120° ÷ 2 = 60°

Vì O là tâm đg tròn ngoại tiếp ∆ ABC (cmt)

➡️OA = OB = OC

Xét ∆ ABO cân tại O (OA = OB) có góc BAO = 60° 

➡️∆ ABO đều

➡️BH là đg cao đồng thời là ttuyến

➡️BH là đg ttuyến của AC

mà E là giao của ttrực AB và ttuyến AO

➡️E là trọng tâm ∆ ABO

C/m tương tự ta có F là trọng tâm ∆ ACO (đpcm)

c, Xét ∆ ABC cân tại A

Góc ABC = góc ACB = (180° - 120°) ÷ 2 = 30°

Gọi OM và ON lần lượt là đg ttrực của AB và AC

Vì AB = AC ➡️AM = BM = AN = CN

Xét ∆ vuông BEM và ∆ CFN có:

Góc M = góc N = 90°

BM = CN (cmt)

Góc ABC = góc ACB (cmt)

➡️∆ vuông BEM = ∆ vuông CFN (ch - gn)

➡️BE = CF ( 2 cạnh t/ư) (1)

     ME = NF (2 cạnh t/ư)

Xét ∆ vuông BEM có góc ABC = 30°

➡️Góc BEM = 90° - 30° = 60°

mà góc BEM đối đỉnh với góc OEH

➡️Góc BEM = góc OEH = 60°

Xét ∆ OBE có góc EBO = góc EOB = 60° ÷ 2 = 30°

➡️∆ OBE cân tại E

➡️BE = OE

Ta có: OE + ME = OM

           OF + NF = ON

mà OM = ON, ME = NF

➡️OE = OF

Xét ∆ OEF cân tại O (OE = OF) có góc OEH = 60°

➡️∆ OEF đều

➡️OE = EF

mà OE = BE (cmt)

➡️BE = EF (2)

Từ (1) và (2) ➡️BE = EF = CF (đpcm)

Hok tốt~

P/s : ôi mỏi tay quá k mk với~