K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2019

thiếu đề phải là 3 số liên tiếp nha bn 

25 tháng 12 2019

Gọi 3 số lần lượt là a;a+1;a+2

Ta có

a+a+1+a+2 

= 3a+3

= 3(a+1)

Vì 3 chia hết cho 3 nên

=> 3(a+1) \(⋮\)3

hay a+a+1+a+2 \(⋮\)3

6 tháng 11 2016

gọi 3 STN đó là a,a+1,a+2

nếu a=3k+1

thì a+1=3k+2

và a+2=3k+3 chia hết cho 3

vậy trong 3 STN liên tiếp có 1 số chia hết cho 3

có nhu cầu thì kết bạn

a) Gọi 3 số tự nhiên liên tiếp là x,x+1,x+2(x∈N)

- Nếu x=3k ( thỏa mãn ). Nếu x=3k+1 thì x+2=3k+1+2=(3k+3)⋮3

- Nếu x=3k+2 thì x+1=3k+1+2=(3k+3)⋮3

Vậy trong 3 số tự nhiên liên tiêp có 1 số chia hết cho 3.

b) Nhận thấy 17n,17n+1,17n+2 là 3 số tự nhiên liên tiếp. Mà 17n không chia hết cho 3, nên trong 2 số còn lại 1 số phải ⋮3

Do vậy: 

6 tháng 2 2021

Tự làm hay cop bạn ?

2 tháng 12 2023

Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2

TH1: Nếu a chia hết cho 3 => Đề bài đúng

TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)

=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng

TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)

=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng

TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)

2 tháng 12 2023

Bài 5:

Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3

Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2

Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4

Nhưng: 2 không chia hết cho 4

Nên: 4(b+1)+2 không chia hết cho 4

Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4 

Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)

30 tháng 7 2016

Tổng 3 số tự nhiên bất kì luôn có 4 trường hợp:

\(l+l+l\Rightarrow\hept{\begin{cases}2l=c\\2l=c\end{cases}}\)  

\(c+c+c\Rightarrow\hept{\begin{cases}c+c=c\\c+c=c\end{cases}}\) 

\(c+l+l\Rightarrow\hept{\begin{cases}c+l=l\\l+l=c\end{cases}}\)

\(c+c+l\Rightarrow\hept{\begin{cases}c+c=c\\c+l=l\end{cases}}\)

Ta thấy: Mọi trường hợp đều có 2 số tự nhiên bất kì có tổng là chia hét cho 2 ( chẵn ) (đpcm)

30 tháng 7 2016

54675765vggny57u