\(P=\frac{a^2+b^2}{b}\)với a>b>0. Biết a-b=1. Tìm GTNN của P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)
Áp dụng bất đẳng thức Côsi cho 2 số dương
\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)
\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)
Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)
2.
\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)
Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5
\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)
Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) và BĐT AM-GM ta có:
\(P=\frac{2}{a^2+b^2}+\frac{2}{2ab}+\frac{32}{ab}+2ab+\frac{2}{ab}\)
\(\ge\frac{2.4}{a^2+b^2+2ab}+2\sqrt{\frac{32}{ab}.2ab}+\frac{2}{ab}\)
\(\ge\frac{8}{\left(a+b\right)^2}+2.\sqrt{64}+\frac{2}{\frac{\left(a+b\right)^2}{4}}\)
\(\ge\frac{8}{4^2}+2.8+\frac{8}{\left(a+b\right)^2}\ge\frac{1}{2}+16+\frac{8}{4^2}=\frac{1}{2}+16+\frac{1}{2}=17\)
Nên GTNN của P là 17 đạt được khi a=b=2
\(B=a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+b\ge2\sqrt{\frac{4\left(a-b\right)}{\left(a-b\right)\left(b+1\right)^2}}+b=\frac{4}{b+1}+b\)
\(B\ge\frac{4}{b+1}+b+1-1\ge2\sqrt{\frac{4\left(b+1\right)}{b+1}}-1=3\)
\(B_{min}=3\) khi \(\left\{{}\begin{matrix}b=1\\a=2\end{matrix}\right.\)
Câu C bạn coi lại đề, khi a>b>1 thì ko có min, a>b>0 mới có min
=(\(\frac{\sqrt{a-b}\left(\sqrt{a+b}-\sqrt{a-b}\right)}{\left(\sqrt{a+b}+\sqrt{a-b}\right)\left(\sqrt{a+b}-\sqrt{a-b}\right)}\)+\(\frac{a-b}{\sqrt{a-b}\left(\sqrt{a+b}-\sqrt{a-b}\right)}\)):\(\frac{\sqrt{a^2-b^2}}{a^2+b^2}\)
=(\(\frac{\sqrt{a^2-b^2}-\left(a-b\right)}{a+b-a+b}+\frac{\sqrt{a^2-b^2}+a-b}{a+b-a+b}\)):\(\frac{\sqrt{a^2-b^2}}{a^2+b^2}\)
=\(\frac{2\sqrt{a^2-b^2}}{2b}\):\(\frac{\sqrt{a^2-b^2}}{a^2+b^2}\)
=\(\frac{\sqrt{a^2-b^2}}{b}\)*\(\frac{a^2+b^2}{\sqrt{a^2-b^2}}\)
=\(\frac{a^2+b^2}{b}\)
b/ Thế \(b=a-1\)thì ta có
\(P=\frac{a^2+\left(a-1\right)^2}{a-1}=\frac{2a^2-2a+1}{a-1}\)
\(\Leftrightarrow2a^2-\left(2+P\right)a+1+P=0\)
\(\Rightarrow\Delta_a=\left(2+P\right)^2-4.2.\left(1+P\right)\ge0\)
\(\Leftrightarrow P\ge2+2\sqrt{2}\)
Lời gải:
Áp dụng BĐT Cauchy Schwarz và BĐT AM-GM:
$M=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+ab}+\frac{1}{b^2+ab}+\frac{1}{a^2+b^2}$
$\geq \frac{(1+1+1+1+1)^2}{2ab+2ab+a^2+ab+b^2+ab+a^2+b^2}=\frac{25}{2a^2+2b^2+6ab}$
$=\frac{25}{2(a^2+b^2+2ab)+2ab}$
$=\frac{25}{2(a+b)^2+2ab}=\frac{25}{2+2ab}\geq \frac{25}{2+2.\frac{(a+b)^2}{4}}=\frac{25}{2+\frac{2}{4}}=10$
Vậy $M_{\min}=10$. Giá trị này đạt tại $a=b=\frac{1}{2}$
Ta có : \(\frac{a}{1+9b^2}=\frac{a+9ab^2-9ab^2}{1+9b^2}=a-\frac{9ab^2}{1+9b^2}\ge a-\frac{9ab^2}{6b}=a-\frac{3ab}{2}\)
Tương tự : \(\frac{b}{1+9c^2}\ge b-\frac{3bc}{2}\); \(\frac{c}{1+9a^2}\ge c-\frac{3ac}{2}\)
\(\Rightarrow Q\ge a+b+c-\frac{3ab+3bc+3ac}{2}\ge a+b+c-\frac{3.\frac{\left(a+b+c\right)^2}{3}}{2}=1-\frac{1}{2}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Ta có: \(Q=\frac{a}{1+9b^2}+\frac{b}{1+9c^2}+\frac{c}{9a^2}=\frac{a+9ab^2-9ab^2}{1+9b^2}+\frac{b+9bc^2-9bc^2}{1+9b^2}+\frac{c+9ca^2-9ca^2}{1+9c^2}\)
\(=1-\frac{9ab^2}{1+9b^2}+b-\frac{9bc^2}{1+9c^2}+c-\frac{9ca^2}{1+9a^2}=1-\left(\frac{9ab^2}{1+9b^2}+\frac{9bc^2}{1+9c^2}+\frac{9ca^2}{1+9a^2}\right)\)
Áp dụng BĐT AM-GM ta có:
\(\frac{9ab^2}{1+9b^2}\le\frac{9ab^2}{2\sqrt{1\cdot9b^2}}=\frac{9ab^2}{2\cdot3b}=\frac{3ab}{2}\)
Tương tự ta có: \(\hept{\begin{cases}\frac{9bc^2}{1+9c^2}\le\frac{3ab}{2}\\\frac{9ca^2}{1+9a^2}\le\frac{3ab}{2}\end{cases}}\)
\(\Rightarrow\frac{9ab^2}{1+9b^2}+\frac{9bc^2}{1+9c^2}+\frac{9ac^2}{1+9a^2}\le\frac{3\left(ab+bc+ca\right)}{2}\le\frac{\left(a+b+c\right)^2}{2}=\frac{1}{2}\)
Hay \(Q=1-\left(\frac{9ab^2}{1+9b^2}+\frac{9bc^2}{1+9c^2}+\frac{9ca^2}{1+9a^2}\right)\ge1-\frac{1}{2}=\frac{1}{2}\)
Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)
Vậy \(Min_P=\frac{1}{2}\)đạt được khi \(a=b=c=\frac{1}{3}\)
Ta có :
\(M=\left(a+1\right)\left(1+\frac{a}{b}\right)+\left(b+1\right)\left(1+\frac{1}{a}\right)\)
\(=2+\frac{a}{b}+\frac{b}{a}+a+b+\frac{1}{a}+\frac{1}{b}\ge2+2+a+b+\frac{4}{a+b}\)
\(=4+a+b+\frac{2}{a+b}+\frac{2}{a+b}\ge4+2\sqrt{\left(a+b\right)\frac{2}{a+b}}+\frac{2}{\sqrt{2\left(a^2-b^2\right)}}=4+3\sqrt{2}\)
Vậy \(_{Min}M=4+3\sqrt{2}\)khi \(a=b=\frac{1}{\sqrt{2}}\)
dit me may