K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Lời giải:

$P=3a^2+5b^2-2a-2ab+1=a^2+(a^2-2ab+b^2)+(a^2-2a+1)+4b^2$

$=a^2+(a-b)^2+(a-1)^2+(2b)^2$

Dễ thấy $a^2\geq 0; (a-b)^2\geq 0; (a-1)^2\geq 0; (2b)^2\geq 0$

Do đó $P\geq 0$.

Dấu "=" xảy ra khi $a=a-b=a-1=2b=0$ (vô lý)

Suy ra $P>0$ (đpcm)

6 tháng 6 2015

10a^2 + 6ab- 5ab - 3b^2=0 <=>  

<=>  (2a-b)(3a+5b)=0 <=>2a = b hoặc 3a = -5b(loại vi b>a>0)

Thay 2a = b vào vế trái ta có

\(\frac{2a-2a}{3a-2a}+\frac{5.2a-a}{3a+2a}=0+\frac{9}{5}=\frac{9}{5}\)

Vậy vế trái bằng vế phải đẳng thức được chứng minh

2 tháng 2 2017

ai giup minh voi mai phai nop roi

6 tháng 3 2020

câu 1 

xét tích 3 số

=(3a^2.b.c^3).(-2a^3b^5c).(-3a^5.b^2.c^2)

=[3.(-2).(-3)].(a^2.a^3.a^5).(b.b^5.b^2).(c.c^3.c^2)

=18.a^10.b^8.c^5 bé hơn hoặc bằng 0

=>tích 3 số đó không thể cùng âm=>3 số đó ko cùng âm dc

bây giờ mk đi học rùi tí về mk làm típ nhá

NV
14 tháng 3 2022

\(2a^2+5b^2+2ab=1\Leftrightarrow\left(a-b\right)^2+\left(a+2b\right)^2=1\)

Đặt \(P=\dfrac{a-b}{a+2b+2}\Rightarrow P\left(a+2b\right)+2P=a-b\)

\(\Rightarrow2P=\left(a-b\right)-P\left(a+2b\right)\)

\(\Rightarrow4P^2=\left[\left(a-b\right)-P\left(a+2b\right)\right]^2\le\left(P^2+1\right)\left[\left(a-b\right)^2+\left(a+2b\right)^2\right]=P^2+1\)

\(\Rightarrow3P^2\le1\Rightarrow-\dfrac{1}{\sqrt{3}}\le P\le\dfrac{1}{\sqrt{3}}\)

6 tháng 10 2020

Ta có: \(10a^2-3b^2+ab=0\Leftrightarrow10a^2+6ab-5ab-3b^2=0\)\(\Leftrightarrow2a\left(5a+3b\right)-b\left(5a+3b\right)=0\Leftrightarrow\left(2a-b\right)\left(5a+3b\right)=0\Leftrightarrow\orbr{\begin{cases}2a-b=0\\5a+3b=0\end{cases}}\)

\(\Leftrightarrow2a=b\)hoặc \(5a=-3b\)( không thoả mãn do b>a>0)

Tthay b=2a vào M ta có: \(M=\frac{2a-2a}{3a-2a}+\frac{5.2a-a}{3a+2a}=\frac{0}{a}+\frac{9a}{5a}=0+\frac{9}{5}=\frac{9}{5}\)