K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2019

Làm đc 1 cách thoii:))

\(17-x+\left|x-4\right|=0\)

\(\Rightarrow x+\left|x-4\right|=17-0\)

\(\Rightarrow x+\left|x-4\right|=17\)

\(\Rightarrow\left|x-4\right|=17-x\)

\(\Rightarrow\orbr{\begin{cases}x-4\\x-4\end{cases}\Rightarrow\orbr{\begin{cases}17-x\\-\left(17-x\right)\end{cases}}}\Rightarrow\orbr{\begin{cases}2x=21\\2x=-13\end{cases}\Leftrightarrow}\orbr{\begin{cases}x\in\left\{\varnothing\right\}\\x\in\left\{\varnothing\right\}\end{cases}}\)

XL nha ko bít làm cách 2 =))

17-x+\(|\)x-4\(|\)=0

      x+\(|\)x-4\(|\)=17-0

      x+\(|\)x-4\(|\)=17

=>      \(|\)x-4\(|\)=17-x

20 tháng 10 2023

a: Tổng các hệ số thu được là: \(\left(5\cdot1-2\right)^5=\left(5-2\right)^5=243\)

b: Tổng các hệ số thu được là: 

\(\left(1^2+1-2\right)^{2010}+\left(1^2-1+1\right)^{2011}\)

\(=0+\left(1-1+1\right)^{2011}\)

=1

17 tháng 7 2016

cả 2 cách đều đúng, nói như vậy phải gộp 2 cái lại

bạn làm theo cách một chúng ta dc:

\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

Đến đây ko phải chỉ có 6x=12 mà phải nghĩ đến nếu 2x+3y-1=0 thì x = bao nhiêu cũng  đúng v~

Khi 2x+3y-1=0 thì nó thành cách 2 đấy

17 tháng 7 2016

Bây giờ mới thấy bài này nhảm quá. Có nhiều x, y mà. Tìm bằng thánh. Gặp bài này nhiều rồi mà giờ mới để ý đó.

v~ thiệt

bây giờ mới thấy bài này nhảm v~

17 tháng 7 2016

hjjj

e nek

Ta có: \(D=\left(x-y\right)^2+2\left(x^2-y^2\right)+\left(x+y\right)^2\)

\(=\left(x-y+x+y\right)^2\)

\(=4x^2\)

4 tháng 9 2021

Bạn quá dảnh nên bạn lám mỗi câu đó thôi à :)

20 tháng 1 2017

a) x(x+2) > 0

=> x2 + 2x > 0 

Vì x2 luôn ≥ 0 với mọi x nên để x2 + 2x > 0 thì 2x > 0 => x>0

Vậy với x>0 thì x(x+2) > 0

b) ( x -1 )( x + 3) < 0

<=> x2 + 3x - x - 3 > 0

<=>  x2 + 2x - 3 > 0

Vì x2 luôn ≥ 0 với mọi x nên để x2 + 2x - 3 < 0 thì 2x - 3 < 0 => 2x < 3 => x < 3/2

Vậy với x<3/2 thì ( x -1 )( x + 3) < 0

c) ( 1 - x )(  y + 1 ) =-3

Ta có bảng: 

1 - x  

1

-1

3

-3

  y + 1

3

-3

1

-1

x

0

2

-2

4

y

2

-4

0

-2

Vậy với x thuộc {…} và y thuộc {…} thì ( 1 - x )(  y + 1 ) =-3

Làm mẫu câu a nha 

a) \(x\left(x+2\right)>0\)

Th1 : \(\hept{\begin{cases}x>0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x>-2\end{cases}\Rightarrow}x>0}\)

Th2 : \(\hept{\begin{cases}x< 0\\x+2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x< -2\end{cases}}\Rightarrow x< -2}\)

Vậy ta có : \(\orbr{\begin{cases}x>0\\x< -2\end{cases}}\)

24 tháng 10 2016

Phân tích thành nhân tử r tìm x nhé bạn. k đi mình làm

7 tháng 7 2017

a) \(3x^2-5x-12=0\)

\(\Leftrightarrow3x^2+4x-9x-12=0\)

\(\Leftrightarrow x\left(3x+4\right)-3\left(3x+4\right)=0\)

\(\Leftrightarrow\left(3x+4\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x+4=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{4}{3}\\x=3\end{cases}}\)

b) \(7x^2-9x+2=0\)

\(\Leftrightarrow7x^2-7x-2x+2=0\)

\(\Leftrightarrow7x\left(x-1\right)-2\left(x-1\right)=0\).

\(\Leftrightarrow\left(7x-2\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7x-2=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{7}\\x=1\end{cases}}\)

6 tháng 6 2021

*Đã hơn 3 ngày mà vẫn chưa có lời giải :(

\(ĐK:x\ne0;y\ne0\)

Với pt(1) : Đặt \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow t^2=\frac{x^2}{y^2}+\frac{y^2}{x^2}+2\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}=t^2-2\)

Mặt khác : \(\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)^2=\left(t^2-2\right)^2\Rightarrow\frac{x^4}{y^4}+\frac{y^4}{x^4}+2=t^4-4t^2+4\)

Từ đó \(\frac{x^4}{y^4}+\frac{y^4}{x^4}=t^4-4t^2+2\)

Theo AM_GM có \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\Leftrightarrow t^2\ge4\Leftrightarrow|t|\ge2\)

Ta có VT của pt (1) : \(g\left(t\right)=t^4-5t^2+t+4,|t|\ge2\)

Có \(g'\left(t\right)=2t\left(2t^2-5\right)+1\)

Nhận xét :

\(t\ge2\Rightarrow2t\left(2t^2-5\right)\ge4\left(8-5\right)>0\Rightarrow g'\left(t\right)>0\)

\(t\le-2\Rightarrow2t\le-4;2t^2-5\ge3\Rightarrow-2t\left(2t^2-5\right)\ge12\Rightarrow2t\left(2t^2-5\right)\le-12\Rightarrow g'\left(t\right)< 0\)

Lập BBT có giá trị nhỏ nhất của g(t)= -2 đạt được tại t= -2 

Vậy từ pt(1) có \(\frac{x}{y}+\frac{y}{x}=-2\left(.\right)\)

Đặt  \(a=\frac{x}{y}\Rightarrow\frac{y}{x}=\frac{1}{a},a\ne0\)

Lúc đó pt (.) \(\Leftrightarrow a+\frac{1}{a}=-2\Leftrightarrow\left(a+1\right)^2=0\Leftrightarrow a=-1\Leftrightarrow x=-y\)

Thay \(x=-y\)vào pt(2) có :

\(x^6+x^2-8x+6=0\Leftrightarrow\left(x-1\right)^2\left(x^4+2x^3+3x^2+4x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[x^2\left(x+1\right)^2+2\left(x+1\right)^2+4\right]=0\)

\(\Leftrightarrow x-1=0\Rightarrow\orbr{\begin{cases}x=1\\y=-1\end{cases}}\)

Vậy HPT có duy nhất 1 nghiệm \(\left(x;y\right)=\left(1;-1\right)\)

27 tháng 5 2021

Em lớp 7 anh(chị) ạ

24 tháng 3 2022

\(\left(2x-5\right)^2-\left(x+2\right)^2=0\)

\(\Leftrightarrow4x^2-20x+25-\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow4x^2-20x+25-x^2-4x-4=0\)

\(\Leftrightarrow3x^2-24x+21=0\)

\(\Leftrightarrow3x^2-21x-3x+21=0\)

\(\Leftrightarrow3x\left(x-7\right)-3\left(x-7\right)=0\)

\(\Leftrightarrow\left(x-7\right)\left(3x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)

\(x^2-x-\left(3x-3\right)=0\)

\(\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)