Cho tam giác ABC cân tại A có góc A < 90°.Kẻ BH vuông góc với AC.Trên cạnh AB lấy điểm K sao cho AK = AH.Gọi là giao điểm của BH và CK.Chứng minh:
a)KH // BC
b)CK vuông góc với AB
c)AO là trung trực của AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời................
Tớ ko biết đúng hay sai nha:
a) Vì ΔΔABC cân tại A
=> AB = AC và ABCˆABC^ = ACBˆACB^
hay KBCˆKBC^ = HCBˆHCB^
Xét ΔΔCKB vuông tại K và ΔΔBHC vuông tại H có:
BC chung
KBCˆKBC^ = HCBˆHCB^ (c/m trên)
=> ΔΔCKB = ΔΔBHC (ch - gn)
=> KB = HC (2 cạnh t/ư)
Ta có: AH + HC = AC
AK + KB = AB
mà AB = AC; KB = HC
=> AH = AK
b)
) Xét ΔΔAHB và ΔΔAKC có:
AH = AK (câu a)
BACˆBAC^ chung
AB = AC (câu a)
=> ΔΔAHB = ΔΔAKC (c.g.c)
=> ABHˆABH^ = ACKˆACK^ (2 góc t/ư)
hay KBIˆKBI^ = HCIˆHCI^
Xét ΔΔKBI và ΔΔHCI có:
KB = HC (câu a)
KBIˆKBI^ = HCIˆHCI^ (c/m trên)
BKIˆBKI^ = CHIˆCHI^ (= 90o)
=> ΔΔKBI = ΔΔHCI (g.c.g)
=> KI = HI (2 cạnh t/ư)
Xét ΔΔAKI và ΔΔAHI có:
KI = HI (c/m trên)
AI chung
AK = AH (câu a)
=> ΔΔAKI = ΔΔAHI (c.c.c)
=> KAIˆKAI^ = HAIˆHAI^ (2 góc t/ư)
Do đó AI là tia pg của AˆA^.
c)
c) Có : KBCˆ+CBEˆ=90o;HCBˆ+HBCˆ=90oKBC^+CBE^=90o;HCB^+HBC^=90o
mà KBCˆ=HCBˆKBC^=HCB^ ⇒⇒ HBCˆ=CBEˆHBC^=CBE^ hay BC là phân giác HBEˆ
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
=>BH=CK
b: Xét ΔAKO vuông tại K và ΔAHO vuông tại H có
AO chung
AK=AH
=>ΔAKO=ΔAHO
=>góc KAO=góc HAO
=>AO là phân giác của góc KAH
a: Xét ΔAHB vuông ạti H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
=>AH=AK
b: Xét ΔAKI vuông tại K và ΔAHI vuông tại H co
AI chung
AK=AH
=>ΔAKI=ΔAHI
=>IH=IK
=>AI là trung trực của KI
c: góc EBC+góc ABC=90 độ
góc HBC+góc ACB=90 độ
góc ABC=góc ACB
=>góc EBC=góc HBC
=>BC là phân giác của góc HBE
Hình tự vẽ nha bạn
a) Xét \(\Delta AHB\)và \(\Delta AKC\)có:
\(\hept{\begin{cases}\widehat{A}:chung\\AB=AC\left(gt\right)\\\widehat{AHB}=\widehat{AKC}\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta AHB=\Delta AKC\left(ch-gn\right)\)
=>AH=AK ( 2 cạnh tương ứng) -đpcm
b) Xét \(\Delta AKI\)và \(\Delta AHI\)có:
\(\hept{\begin{cases}AK=AH\\\widehat{AKI}=\widehat{AHI}\\AI:chung\end{cases}}\)
\(\Rightarrow\Delta AKI=\Delta AHI\left(ch-cgv\right)\)
\(\Rightarrow\widehat{IAK}=\widehat{IAH}\)( 2 góc tương ứng)
=> AI là ti phân giác góc KAH
Xét \(\Delta KAH\)cân tại A ( do AH=AK ) có AI là tia phân giác ứng cạnh KH
=> AI đồng thời là đường trung trực của cạnh KH (t/c) -đpcm
c) Kẻ CM \(\perp\)BE
Xét tứ giác BKCM có:
\(\hept{\begin{cases}\widehat{CKB}=90^0\\\widehat{KBM}=90^0\\\widehat{BMC}=90^0\end{cases}}\)
=> tứ giác BKCM là hình chữ nhật (dấu hiệu nhận biết)
=> BK=CM (t/c) (1)
Dễ dàng chứng minh đc: BK=CH (2)
Từ (1) và (2) có : CM=CH
Xét \(\Delta BHC\)và \(\Delta BMC\)có:
\(\hept{\begin{cases}CH=CM\\\widehat{BHC}=\widehat{BMC}\\CB:chung\end{cases}}\)
=> \(\Delta BHC=BMC\left(ch-cgv\right)\)
=> \(\widehat{CBH}=\widehat{CBM}\)(2 góc tương ứng)
=> BC là tia phân giác góc HBM
hay BC là tia phân giác HBE -đpcm
Chúc bạn học tốt!
d) Xét tam giác CME vuông tại M có CE là cạnh huyền
=>CE>CM (trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà CH=CM do \(\Delta CBH=\Delta CBM\)
=>CE>CH
a) Vì tam giác ABC cân => \(\hept{\begin{cases}AB=AC\\\widehat{ABM}=\widehat{ANC}\end{cases}}\)
mà BM=CN => \(\Delta AMB=\Delta ANC\left(cgc\right)\)=> AM=AN
=> Tam giác AMN cân tại A
b) \(S_{AMB}=S_{ANC}\)=> \(BH\cdot AM=CK\cdot AN\)
<=> BH=CK (vì AM=AN)
c) \(\hept{\begin{cases}\widehat{AHB}=\widehat{AKC}=90^o\\AB=AC\\BH=CK\end{cases}\Rightarrow\Delta AHB=\Delta AKC\left(ch-gv\right)}\)
=> AH=CK