a) x/3=y/4và xy=84
b)x/5=y/4 và x^2 - y^2 =1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x+y+z = ( 2 + 3 + 5 ) : 2 = 5
x = 5 - 3 = 2
y = 5 - 5 = 0
z = 5 - 2 = 3
b) Vậy y - x = 84
Ư(1261) = { 1;13;98;1261 }
Các cặp số nhân nhau bằng 1261 là 1.1261 và 13.98.
Trong đó 13.98 có hiệu hai thừa số là 84.
Vậy x.y = 13.97
x = 13 ; y = 97
c) (y+1).(xy-1) = 3
Ta có:
y+1 | -3 | -1 | 1 | 3 |
xy-1 | -1 | -3 | 3 | 1 |
x | 0 | 1 | 4 | 1 |
y | -4 | -2 | 0 | 2 |
Ta có các cặp ( x;y ) = ( 0;-4 ) ; ( 1;-2 ) ; ( 4;0 ) ; ( 1;2 )
(x+y)^2 =a^2
x^2 +2xy +y^2 =a^2
x^2+y^2 =a^2-2xy =a^2 -2b
x^3 +y^3 = (x+y)(x^2 -xy +y^2)
=a(a^2-2b-b)
=a(a^2-3b)
=a^3- 3ab
(x^2 +y^2)^2=(a^2-2b)^2 ( cái này tính cho x^4 + y^4)
tương tự như câu đầu tiên
x^5+ y^5 (cái đó mình không biết)
Bài 2:
a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-4\)
hay \(x=\dfrac{2}{7}\)
b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)
\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)
\(\Leftrightarrow x^3=-8\)
hay x=-2
Bài 1:
a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)
\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)
\(=xy\)
=1
b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)
\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)
\(=x^2-y^2\)
\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)
\(\hept{\begin{cases}\frac{x-3}{2}=\frac{y-4}{3}=\frac{z+5}{4}\\x-3y+z=8\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x-3}{2}=\frac{3\left(y-4\right)}{3\cdot3}=\frac{z+5}{4}\\x-3y+z=8\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x-3}{2}=\frac{3y-12}{9}=\frac{z+5}{4}\\x-3y+z=8\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(...=\frac{x-3-\left(3y-12\right)+z+5}{2-9+4}=\frac{x-3-3y+12+z+5}{2-9+4}=\frac{\left(x-3y+z\right)-3+12+5}{2-9+4}=\frac{8-3+12+5}{2-9+4}=-\frac{22}{3}\)
\(\frac{x-3}{2}=-\frac{22}{3}\Rightarrow x-3=-\frac{44}{3}\Rightarrow x=-\frac{35}{3}\)
\(\frac{y-4}{3}=-\frac{22}{3}\Rightarrow y-4=-22\Rightarrow y=-18\)
\(\frac{z+5}{4}=-\frac{22}{3}\Rightarrow z+5=-\frac{88}{3}\Rightarrow z=-\frac{103}{3}\)
Vậy ...
a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)
\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)
\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)
b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)
\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)
\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)
Câu 3:
a: A(x)=x^3+3x^2-4x-12
B(x)=x^3-3x^2+4x+18
A(x)+B(x)
=x^3+3x^2-4x-12+x^3-3x^2+4x+18
=2x^3+6
A(x)-B(x)
=x^3+3x^2-4x-12-x^3+3x^2-4x-18
=6x^2-8x-30
b: A(-2)=(-8)+3*4-4*(-2)-12
=-20+3*4+4*2=0
=>x=-2 là nghiệm của A(x)
B(-2)=(-8)-3*(-2)^2+4*(-2)+18=-10
=>x=-2 ko là nghiệm của B(x)
a) \(\left\{{}\begin{matrix}2x+3y=5\\4x-5y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x-5y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=5\\11y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3\cdot\dfrac{9}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{27}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{28}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{14}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)
Vậy: \(x=\dfrac{14}{11};y=\dfrac{9}{11}\)
a) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Thay \(x=3k,y=4k\) vào x . y = 84, có:
\(3k.4k=84 \\ \Leftrightarrow12k^2=84\\ \Leftrightarrow k^2=7\\ \Leftrightarrow k^2=\left(\pm\sqrt{7}\right)^2\\ \Rightarrow k\in\left\{\sqrt{7};-\sqrt{7}\right\}\)
+Khi \(k=\sqrt{7}\Rightarrow\left\{{}\begin{matrix}x=\sqrt{7}.3=3\sqrt{7}\\y=\sqrt{7}.4=4\sqrt{7}\end{matrix}\right.\)
+Khi \(k=-\sqrt{7}\Rightarrow\left\{{}\begin{matrix}x=-\sqrt{7}.3=-3\sqrt{7}\\y=-\sqrt{7}.4=-4\sqrt{7}\end{matrix}\right.\)
Vậy...
b)
Ta có: \(\frac{x}{5}=\frac{y}{4}.\)
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{16}\) và \(x^2-y^2=1.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{1}{9}.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x^2}{25}=\frac{1}{9}\Rightarrow x^2=\frac{25}{9}\Rightarrow\left[{}\begin{matrix}x=\frac{5}{3}\\x=-\frac{5}{3}\end{matrix}\right.\\\frac{y^2}{16}=\frac{1}{9}\Rightarrow y^2=\frac{16}{9}\Rightarrow\left[{}\begin{matrix}y=\frac{4}{3}\\y=-\frac{4}{3}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(\frac{5}{3};\frac{4}{3}\right),\left(-\frac{5}{3};-\frac{4}{3}\right).\)
Chúc bạn học tốt!