K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2019

a) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)

Thay \(x=3k,y=4k\) vào x . y = 84, có:

\(3k.4k=84 \\ \Leftrightarrow12k^2=84\\ \Leftrightarrow k^2=7\\ \Leftrightarrow k^2=\left(\pm\sqrt{7}\right)^2\\ \Rightarrow k\in\left\{\sqrt{7};-\sqrt{7}\right\}\)

+Khi \(k=\sqrt{7}\Rightarrow\left\{{}\begin{matrix}x=\sqrt{7}.3=3\sqrt{7}\\y=\sqrt{7}.4=4\sqrt{7}\end{matrix}\right.\)

+Khi \(k=-\sqrt{7}\Rightarrow\left\{{}\begin{matrix}x=-\sqrt{7}.3=-3\sqrt{7}\\y=-\sqrt{7}.4=-4\sqrt{7}\end{matrix}\right.\)

Vậy...

21 tháng 12 2019

b)

Ta có: \(\frac{x}{5}=\frac{y}{4}.\)

\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{16}\)\(x^2-y^2=1.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{1}{9}.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x^2}{25}=\frac{1}{9}\Rightarrow x^2=\frac{25}{9}\Rightarrow\left[{}\begin{matrix}x=\frac{5}{3}\\x=-\frac{5}{3}\end{matrix}\right.\\\frac{y^2}{16}=\frac{1}{9}\Rightarrow y^2=\frac{16}{9}\Rightarrow\left[{}\begin{matrix}y=\frac{4}{3}\\y=-\frac{4}{3}\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(\frac{5}{3};\frac{4}{3}\right),\left(-\frac{5}{3};-\frac{4}{3}\right).\)

Chúc bạn học tốt!

5 tháng 7 2016

a) x+y+z = ( 2 + 3 + 5 ) : 2 = 5

x = 5 - 3 = 2

y = 5 - 5 = 0

z = 5 - 2 = 3

b) Vậy y - x = 84

Ư(1261) = { 1;13;98;1261 }

Các cặp số nhân nhau bằng 1261 là 1.1261 và 13.98.

Trong đó 13.98 có hiệu hai thừa số là 84.

Vậy x.y = 13.97

x = 13 ; y = 97

c) (y+1).(xy-1) = 3

Ta có:

y+1-3-113
xy-1-1-331
x0141
y-4-202

Ta có các cặp ( x;y ) = ( 0;-4 ) ; ( 1;-2 ) ; ( 4;0 ) ; ( 1;2 )

8 tháng 8 2017

(x+y)^2  =a^2

x^2 +2xy +y^2 =a^2

x^2+y^2 =a^2-2xy =a^2 -2b

x^3 +y^3 = (x+y)(x^2 -xy +y^2)

             =a(a^2-2b-b)

            =a(a^2-3b)

            =a^3- 3ab

(x^2 +y^2)^2=(a^2-2b)^2  ( cái này tính cho x^4 + y^4)

tương tự như câu đầu tiên 

x^5+ y^5 (cái đó mình không biết)

8 tháng 8 2017

sai con khi

Bài 2:

a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)

\(\Leftrightarrow10x-16-12x+15=12x-16+11\)

\(\Leftrightarrow-14x=-4\)

hay \(x=\dfrac{2}{7}\)

b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)

\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)

\(\Leftrightarrow x^3=-8\)

hay x=-2

Bài 1: 

a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)

\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)

\(=xy\)

=1

b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)

\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)

\(=x^2-y^2\)

\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)

24 tháng 8 2020

\(\hept{\begin{cases}\frac{x-3}{2}=\frac{y-4}{3}=\frac{z+5}{4}\\x-3y+z=8\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x-3}{2}=\frac{3\left(y-4\right)}{3\cdot3}=\frac{z+5}{4}\\x-3y+z=8\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x-3}{2}=\frac{3y-12}{9}=\frac{z+5}{4}\\x-3y+z=8\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(...=\frac{x-3-\left(3y-12\right)+z+5}{2-9+4}=\frac{x-3-3y+12+z+5}{2-9+4}=\frac{\left(x-3y+z\right)-3+12+5}{2-9+4}=\frac{8-3+12+5}{2-9+4}=-\frac{22}{3}\)

\(\frac{x-3}{2}=-\frac{22}{3}\Rightarrow x-3=-\frac{44}{3}\Rightarrow x=-\frac{35}{3}\)

\(\frac{y-4}{3}=-\frac{22}{3}\Rightarrow y-4=-22\Rightarrow y=-18\)

\(\frac{z+5}{4}=-\frac{22}{3}\Rightarrow z+5=-\frac{88}{3}\Rightarrow z=-\frac{103}{3}\)

Vậy ...

NM
12 tháng 8 2021

a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)

\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)

\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)

b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)

\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)

\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)

\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)

Câu 3:

a: A(x)=x^3+3x^2-4x-12

B(x)=x^3-3x^2+4x+18

A(x)+B(x)

=x^3+3x^2-4x-12+x^3-3x^2+4x+18

=2x^3+6

A(x)-B(x)

=x^3+3x^2-4x-12-x^3+3x^2-4x-18

=6x^2-8x-30

b: A(-2)=(-8)+3*4-4*(-2)-12

=-20+3*4+4*2=0

=>x=-2 là nghiệm của A(x)

B(-2)=(-8)-3*(-2)^2+4*(-2)+18=-10

=>x=-2 ko là nghiệm của B(x)

 

3 tháng 7 2023

a) \(\left\{{}\begin{matrix}2x+3y=5\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=5\\11y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3\cdot\dfrac{9}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{27}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{28}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{14}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

Vậy: \(x=\dfrac{14}{11};y=\dfrac{9}{11}\)