K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2018

A = \(3^1+3^2+3^3+...+3^{60}\)

A = 3 ( 1 + 3 ) + \(3^3\left(1+3\right)\)+  ..... + \(3^{59}\left(1+3\right)\)

A = 3 . 4 + \(3^3.4\) +   ..... + \(3^{59}.4\)

A = 4 ( \(3+3^3+....+3^{59}\)) chia hết cho 4 

Vậy A = \(3^1+3^2+3^3+...+3^{60}\)chia hết cho 4

10 tháng 11 2018

Thăm Tuy Thăm Tuy làm đúng r mà

k bn ấy nha

9 tháng 12 2021

\(a,S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\\ S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ S=\left(3+3^2\right)\left(1+3^2+...+3^{18}\right)=12\left(1+3^2+...+3^{18}\right)⋮12\)

\(b,S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ S=\left(3+3^2+3^3+3^4\right)+....+3^{16}\left(3+3^2+3^3+3^4\right)\\ S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ S=120\left(1+...+3^{16}\right)⋮120\)

9 tháng 12 2021

\(a,S=3+3^2+3^3+...+3^{20}\)

Ta thấy:\(3+3^2=12⋮12\)

\(\Rightarrow S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ \Rightarrow S=\left(3+3^2\right)\left(1+3^2+...+1^{18}\right)\\ \Rightarrow S=12.\left(1+3^2+...+3^{18}\right)⋮12\\ \left(đpcm\right)\)

\(b,Ta\) \(thấy:\)\(3+3^2+3^3+3^4=120⋮120\)

\(\Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+3^{16}\left(3+3^2+3^3+3^4\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ \Rightarrow S=120\left(1+...+3^{16}\right)⋮120\\ \left(đpcm\right)\)

18 tháng 10 2023

Ta có:

\(A=1+3+3^2+...+3^{10}+3^{11}\)

\(A=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(A=40+...+3^8.\left(1+3+3^2+3^3\right)\)

\(A=40+...+3^8.40\)

\(A=40.\left(1+...+3^8\right)\)

Vì \(40⋮5\) và \(8\) nên \(40.\left(1+...+3^8\right)⋮5\) và \(8\)

Vậy \(A⋮5\) và \(8\)

_________

Ta có:

\(B=1+5+5^2+...+5^7+5^8\)

\(B=\left(1+5+5^2\right)+...\left(5^6+5^7+5^8\right)\)

\(B=31+...+5^6.\left(1+5+5^2\right)\)

\(B=31+...+5^6.31\)

\(B=31.\left(1+...+5^6\right)\)

Vì \(31⋮31\) nên \(31.\left(1+...+5^6\right)⋮31\)

Vậy \(B⋮31\)

\(#WendyDang\)

28 tháng 12 2016

không chia hết cho 12 ghép ba số lại mà tính nhé chúc may mắn 

29 tháng 12 2016

A = 3 + 3^2 + 3^3 + ... + 3^20

A x 3 = 3^2 + 3^3 + 3^4 + ... + 3^21

A x 3 chia hết cho 3 => A chia hết cho 3

20 tháng 12 2018

n chia hết cho 3 \(\Rightarrow\)n^3 nà n^2  chia hết cho 9

   Mà 3 chia 9 dư 3 \(\Rightarrow\)A chia 9 dư 3

                              \(\Rightarrow\)A không chia hết cho 9(đpcm)

31 tháng 10 2021

A = 3 + 32 + 33 + 34 + ... 3100

A = 31 + 32 + 33 + 34 + ...... 3100

A = ( 3100 - 31 ) : 11

A = 398 - ( 32 + 34 )

A = 392

A không chia hết cho 12 vì 12 là thừa số nguyên tố chẵn 

31 tháng 10 2021

+) \(A=3+3^2+3^3+3^4+...+3^{100}\)

\(A=3\left(1+3\right)+3^3\left(1+3\right)+....+3^{99}\left(1+3\right)\)

\(\Rightarrow A⋮4\)

+) \(A=3+3^2+3^3+3^4+...+3^{100}\)

\(A=3\left(1+3+3^2\right)+.....\)( tương tự nhóm liên tiếp 3 số )

\(A=3.13+......⋮13\)

\(\Rightarrow A⋮̸12\)

21 tháng 12 2016

21 = 7 . 3

A= (2+22)+(23+24)+...+(259+260)

A=2.(1+2)+23.(1+2)+...+259.(1+2)

A=2.3+23.3+...+259.3

A=3.(2+23+...+259)

Vì 3 chia hết cho 3 => 3.(2+23+...+259)  chia hết cho 3

=>A  chia hết cho 3

A= (2+22+23)+...+(258+259+260)

A=2.(1+2+22)+...+258.(1+2+22)

A=2.7+...+258.7

A=7.(2+...+258)

Vì 7  chia hết cho 7 =>7.(2+...+258)  chia hết cho 7

=>A  chia hết cho 7

Vì A cùng chia hết cho 7 ; 3 đồng nghĩa với A chia hết cho 21 .