Cho tam giác ABC có : AB < AC . Trên cạnh AC lấy điểm D sao cho AD = AB . Gọi M trung điểm BD .
a ) CM: \(\Delta ABM=\Delta ADM\)
b ) \(CM:AM\perp BD\)
c ) Tia AM cắt BC tại K . CM : \(\widehat{ABK}=\widehat{ADK}\)
d ) Trên tia đối của tia BA lấy điểm F sao cho BF = DC . Chứng minh F , K , D thẳng hàng
Hình bạn tự vẽ nha!
a)
Xét tam giác ABM và tam giác ADM có:
AB = AD (gt)
BM = DM (vì M là trung điểm của BD)
AM là cạnh chung
=> Tam giác ABM = Tam giác ADM (c . c . c)
b) Xét tam giác ABD có:
AB = AD (gt)
=> Tam giác ABD cân tại A.
Có M là trung điểm của BD
=> AM là đường trung tuyến của tam giác ABD.
=> AM đồng thời là đường cao của tam giác ABD.
=> AM ⊥ BD.
c) Theo câu b) ta có tam giác ABM = tam giác ADM.
=> BAM = DAM (2 góc tương ứng)
Hay BAK = DAK.
Xét tam giác ABK và tam giác ADK có:
AB = AD (gt)
BAK = DAK (cmt)
AK là cạnh chung
=> Tam giác ABK = Tam giác ADK (c . g . c)
=> ABK = ADK (2 góc tương ứng).
d) Theo câu c) ta có tam giác ABK = tam giác ADK.
=> BK = DK (2 cạnh tương ứng).
Ta có:
ABK + KBF = 1800 (vì 2 góc kề bù)
ADK + KDC = 1800 (vì 2 góc kề bù)
Mà ABK = ADK (cmt)
=> KBF = KDC
Xét tam giác KBF và tam giác KDC có:
KB = KD (cmt)
KBF = KDC (cmt)
BF = DC (gt)
=> Tam giác KBF = Tam giác KDC (c . g . c)
=> BKF = DKC (2 góc tương ứng)
Lại có: BKD + DKC = 180 (2 góc kề bù)
Mà BKF = DKC (cmt).
=> BKD + BKF = 1800
Mà BKD + BKF = FKD.
=> FKD = 1800
=> F, K, D thẳng hàng (đpcm).
Chúc bạn học tốt!