cmr với mọi n>=5 ta có 1/2! + 1/3! +1/4! +....+1/n! > 0,71
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(5.19^n+1\equiv2.1^n+1\equiv0\left(mod3\right)\)=> ĐPCM
gọi A là vế trái của bất đẳng thức trên
Ta có : \(\frac{1}{k^3}< \frac{1}{k^3-k}=\frac{1}{k.\left(k-1\right)\left(k+1\right)}\)
Do đó : A < \(\frac{1}{2^3-2}+\frac{1}{3^3-3}+...+\frac{1}{n^3-n}=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
Đặt C = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
Ta thấy \(\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}=\frac{2}{\left(n-1\right)n\left(n+1\right)}\)
nên
C = \(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{n\left(n+1\right)}\right)=\frac{1}{4}-\frac{1}{2n\left(n+1\right)}< \frac{1}{4}\)
Vậy ....
a) n(n + 5) - (n - 3)(n + 2) = n2 + 5n - n2 - 2n + 3n + 6 = 6n + 6 = 6(n + 1) \(⋮\)6 \(\forall\)x \(\in\)Z
b) (n2 + 3n - 1)(n + 2) - n3 + 2 = n3 + 2n2 + 3n2 + 6n - n - 2 - n3 + 2 = 5n2 + 5n = 5n(n + 1) \(⋮\)5 \(\forall\)x \(\in\)Z
c) (6n + 1)(n + 5) - (3n + 5)(2n - 1) = 6n2 + 30n + n + 5 - 6n2 + 3n - 10n + 5 = 24n + 10 = 2(12n + 5) \(⋮\)2 \(\forall\)x \(\in\)Z
d) (2n - 1)(2n + 1) - (4n - 3)(n - 2) - 4 = 4n2 - 1 - 4n2 + 8n + 3n - 6 - 4 = 11n - 11 = 11(n - 1) \(⋮\)11 \(\forall\)x \(\in\)Z