K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 10 2021

a. Đề bài em ghi sai thì phải

Vì:

\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)

\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)

\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)

NV
25 tháng 10 2021

b.

Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)

Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R

Hàm bậc 3 nên có tối đa 3 nghiệm

\(f\left(-2\right)=-8+4a-2b+c>0\)

\(f\left(2\right)=8+4a+2b+c< 0\)

\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)

\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)

\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)

Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn  có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)

\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb

14 tháng 7 2019

\(\left|3x-1\right|=\left|2x+5\right|\)

\(\Rightarrow\orbr{\begin{cases}3x-1=2x+5\\3x-1+2x+5=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}3x-2x=5+1\\5x+4=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=6\\x=-\frac{4}{5}\end{cases}}\)

14 tháng 7 2019

Ta có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left|3y-1\right|\ge0\\\left|z+2\right|\ge0\end{cases}}\Rightarrow\left(x-1\right)^2+\left|3y-1\right|+\left|z+2\right|\ge0\)

Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left|3y-1\right|=0\\\left|z+2\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\3y-1=0\\x+2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{3}\\z=-2\end{cases}}\)

Vậy x = 1, \(y=\frac{1}{3}\),z = -2

14 tháng 10 2021

\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xyz-3x^2y-3xy^2\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]\)

\(=0\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)

18 tháng 4 2021

Áp dụng BĐT cói cho 2 số ko âm ta có 

X^2+y^2 >= 2 .căn x^2 .y^2 = 2.xy= 2.6 =12 

Vậy P min =12 dấu = xảy ra khi x^2=y^2 <=> x=y 

( thông cảm mình gõ mũ ko đc ) 

(x+y+z)^2=x^2+y^2+z^2

=>2(xy+yz+xz)=0

=>xy+xz+yz=0

=>xy/xyz+xz/xyz+yz/xyz=0

=>1/x+1/y+1/z=0

1 tháng 2

\(x^2+5y^2+2y+4xy-3=0\)
\(\Leftrightarrow\)\((x^2+4xy+4y^2)+(y^2+2y+1)=4\)
\(\Leftrightarrow\)\((x+2y)^2+(y+1)^2=4\)
\(\Leftrightarrow\)\((x+2y)^2=4-(y+1)^2\)
\(\Leftrightarrow\)\((x+2y)^2=(2-y-1)(2+y+1)\)
\(\Leftrightarrow\)\((x+2y)^2=(1-y)(3+y)\)
\(Vì \) \((x+2y)^2\geq0\)
\(\Rightarrow\)\((1-y)(3+y)\geq0\)
\(\Rightarrow\)\(\left[\begin{array}{} \begin{cases} 1-y\geq0\\ 3+y\geq0 \end{cases}\\ \begin{cases} 1-y\leq0\\ 3+y\leq0 \end{cases} \end{array} \right.\)
\(\Rightarrow\)\(\left[\begin{array}{} \begin{cases} y\leq1\\ y\geq-3 \end{cases}\\ \begin{cases} y\geq1\text{(Vô lí)}\\ y\leq-3\text{(Vô lí)} \end{cases} \end{array} \right.\)
\(\Rightarrow\)\(-3\leq y\leq1\)
\(\text{Mà y là số nhỏ nhất}\)
\(\Rightarrow\)\(y=-3\)
\(\Rightarrow\)\(x+2.(-3)=0\text{ (Vì }(x+2y)^2\geq0)\)
\(\Rightarrow\)\(x=6\)
\(\text{Vậy cặp số (x,y) thỏa mãn yêu cầu bài toán là: (6;-3)}\)
Nếu mình đúng cho mình xin 1 like nha

NV
27 tháng 1 2021

\(P=\sqrt{4x^2+36y^2+24xy+3x^2+3y^2-6xy}+\sqrt{36x^2+4y^2+24xy+3x^2+3y^2-6xy}\)

\(P=\sqrt{\left(2x+6y\right)^2+3\left(x-y\right)^2}+\sqrt{\left(6x+2y\right)^2+3\left(x-y\right)^2}\)

\(P\ge\sqrt{\left(2x+6y\right)^2}+\sqrt{\left(6x+2y\right)^2}=8\left(x+y\right)\ge16\sqrt{xy}=16\)

\(P_{min}=16\) khi \(x=y=1\)