tính nhanh A=99^2+54.52+54.78-1
B=X^3-3x^2+3x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A(x)+B(x)=(x^3-3x^2+3x-1)+(2x^3+x^2-x+5)$
$=3x^3-2x^2+2x+4$
b.
$A(x)C(x)=(x^3-3x^2+3x-1)(x-2)=x(x^3-3x^2+3x-1)-2(x^3-3x^2+3x-1)$
$=(x^4-3x^3+3x^2-x)-(2x^3-6x^2+6x-2)$
$=x^4-5x^3+9x^2-7x+2$
a: \(=\dfrac{x-2x-1}{x+1}=\dfrac{-\left(x+1\right)}{x+1}=-1\)
b: \(=\dfrac{2+2x}{x\left(x+1\right)}=\dfrac{2\left(x+1\right)}{x\left(x+1\right)}=\dfrac{2}{x}\)
c: \(=\dfrac{3x-1}{2\left(3x+1\right)}+\dfrac{3x+1}{2\left(3x-1\right)}-\dfrac{6x}{\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{18x^2-12x+2}{2\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{2\left(3x-1\right)^2}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{3x-1}{3x+1}\)
a)
\(\left|2-3x\right|=-1\) (vô lí vì \(\left|2-3x\right|\ge0\) )
b)
`3x-2,42+0,8=3,38-0,2x`
`<=>3x+0,2x=3,38+2,42-0,8`
`<=>3,2x=5`
`<=>x=25/16`
c)
\(\dfrac{3}{x-1}+\dfrac{2}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\left(x\ne1\right)\)
\(< =>\dfrac{3}{x-1}+\dfrac{2}{x^2+x+1}=\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(< =>\dfrac{3\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}\)
suy ra
`3x^2 +3x+3+2x-2=3x^2`
`<=>3x^2 -3x^2 +3x+2x=-3+2`
`<=>5x=-1`
`<=>x=-1/5(tmđk)`
Tính tổng: 1x2 + 2x3 + 3x4 + 4x5 +.............+ 99x100
Gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
3A= 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
3A = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
3A = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
3A = 99x100x101
A = 99x100x101 : 3
A = 333300
a) \(4x-\sqrt[]{3\left(3x-1\right)}=3x-1\)
\(\Leftrightarrow\sqrt[]{3\left(3x-1\right)}=x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\3\left(3x-1\right)=\left(x+1\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\9x-3=x^2+2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\left(a\right)\\x^2-7x+4=0\left(1\right)\end{matrix}\right.\)
Giải \(pt\left(1\right):\)
\(\Delta=49-16=33\Rightarrow\sqrt[]{\Delta}=\sqrt[]{33}\)
Phương trình (1) có 2 nghiệm phân biệt
\(\left[{}\begin{matrix}x=\dfrac{7+\sqrt[]{33}}{2}\\x=\dfrac{7-\sqrt[]{33}}{2}\end{matrix}\right.\) (thỏa \(\left(a\right)\))