Cho hình thang ABCD (AC//AD). Biết AB⊥AD và AB=10cm, CD=26cm. Tính diện tích hình thang cân ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gửi bạn lời giải. Có gì sai sót thì bạn góp ý nhé!
Kẻ \(\)$\(CH \perp AB\)$ tại H, $\(DK \perp AB\)$ tại K.
Áp dụng định lí Pytago vào tam giác ABC vuông tại C, ta có:
$\(AC^2=AB^2-BC^2=26^2-10^2=576\)$
Áp dụng hệ thức lượng vào tam giác ABC vuông tại C với đường cao CH, ta có:
$\(\dfrac{1}{CH^2}=\dfrac{1}{DK^2}=\dfrac{1}{AC^2}+\dfrac{1}{BC^2}=\dfrac{1}{100}+\dfrac{1}{576}=\dfrac{169}{14400}\)$ (do ABCD là hình thang cân)
⇒ $\(CH^2=DK^2=\dfrac{14400}{169}\)$
⇒ $\(CH=DK=\dfrac{120}{13}\)$
Áp dụng định lí Pytago vào tam giác CHB vuông tại H và tam giác AKD vuông tại K có:
$\(BH^2=AK^2=10^2-\dfrac{14400}{169}=\dfrac{2500}{169}\)$ ⇒ $\(BH=AK=\dfrac{50}{13}cm\)$ Ta có: $\(AB=AK+HK+BH=AK+CD+HK\)$ ⇒ $\(CD=AB-AK-HK=26-\dfrac{100}{13}=\dfrac{238}{13}\)$
Ta có: $\({S}_{ABCD}=\dfrac{(AB+CD).AH}{2}=\dfrac{(26+\dfrac{238}{13}).\dfrac{120}{13}}{2}=\dfrac{34560}{169} cm^2\)$
2 đg chéo vuông góc vói nhau=>là hcn
dt hcn =dt ht cân
26x10=260 cm2
đ/s: 260 cm2
Ai tích mk mk sẽ tích lại
Xét tam giác vuông \(AHC\)và tam giác vuông \(BKD\)ta có:
\(AD=BC\left(gt\right)\)
\(\widehat{C}=\widehat{D}\left(gt\right)\)
\(\Rightarrow\)tam giác vuông AHD = tam giác vuông BKC ( cạnh huyền - góc nhọn )
=> HC=HD(2 cạnh tương ứng)
Ta có: \(HK=10cm\)
\(\Rightarrow HC=\frac{CD-HK}{2}=\frac{26-10}{2}=8cm\)
Áp dụng định lí Pytago trong tam giác vuông AHC:
\(AC^2=HC^2+AH^2\\ \Rightarrow AH^2=AC^2-HC^2\\ =289-64=225\\ \Rightarrow AH=\sqrt{225}=15cm\)
Vậy đường cao của hình thang ABCD là 15cm
Để tính diện tích hình thang ABCD, ta cần biết độ dài đường cao h của hình thang. Vì đường chéo AC vuông góc với BC, ta có thể sử dụng định lý Pythagoras để tính độ dài đường cao h.
Theo định lý Pythagoras, ta có:
AC^2 = AB^2 - BC^2
AC^2 = 26^2 - 10^2
AC^2 = 676 - 100
AC^2 = 576
AC = √576
AC = 24 cm
Vậy độ dài đường cao h của hình thang là 24 cm.
Tiếp theo, ta có công thức tính diện tích hình thang:
S = (AB + CD) * h / 2
S = (26 + 10) * 24 / 2
S = 36 * 24 / 2
S = 864 / 2
S = 432 cm^2
Vậy diện tích hình thang ABCD là 432 cm^2.
kẻ bk ⊥ dc ag ⊥ dc
abcd là ht cân
suy ra kc +dg+gk=dc
2kc +ab =dc
kc= dc -ab trên 2 = 10-4 trên 2=3 cm
bk mũ 2 = bc mũ 2 - kc mũ 2 = 5 mũ 2 - 3 mũ 2 =4cm
ta có ih song song kb
di = ib
suy ra ih là đường tb
suy ra ih =1 phần 2 kb = 1 phần 2 nhân 4 =2 cm
Xét tam giác \(ABD\)vuông tại \(A\):
\(BD^2=AB^2+AD^2\)(định lí Pythagore)
\(=4^2+10^2=116\)
\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)
Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)
Suy ra \(ABDE\)là hình bình hành.
\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)
\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)
\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)
Hạ \(BH\perp CD\).
\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)
\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)