\(\frac{3x+2}{x^2-2x+1}\)-\(\frac{6}{x^2-1}\)-\(\frac{3x-2}{x^2+2x+1}\)
giúp mk nhanh vs, ai đúng mk tặng 3 tick nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(B=\left(2x-5\right)\cdot3x-2x\left(3x+1\right)\)
\(=6x^2-15x-6x^2-2x\)
\(=-17x\)
Thay \(x=\frac{1}{2}\) vào biểu thức B=-17x, ta được:
\(B=-17\cdot\frac{1}{2}=\frac{-17}{2}\)
Vậy: \(-\frac{17}{2}\) là giá trị của biểu thức \(B=\left(2x-5\right)\cdot3x-2x\left(3x+1\right)\) tại \(x=\frac{1}{2}\)
b) Ta có: \(G=\left(x+3\right)\cdot4x-3x\left(x-2\right)-x^2\)
\(=4x^2+12x-3x^2+6x-x^2\)
=18x
Thay x=-2 vào biểu thức G=18x, ta được:
\(G=18\cdot\left(-2\right)=-36\)
Vậy: -36 là giá trị của biểu thức \(G=\left(x+3\right)\cdot4x-3x\left(x-2\right)-x^2\) tại x=-2
Bài 2:
Sửa đề: \(P=\left(x-2\right)\cdot x-3x\left(x+1\right)+2x^2+5x-3\)
Ta có: \(P=\left(x-2\right)\cdot x-3x\left(x+1\right)+2x^2+5x-3\)
\(=x^2-2x-3x^2-3x+2x^2+5x-3\)
\(=-3\)
Vậy: P không phụ thuộc vào x(đpcm)
a)\(\frac{x+3}{x+5}=7\Leftrightarrow x+3=7\left(x+5\right)\)
\(\Leftrightarrow x+3=7x+35\)
\(\Leftrightarrow-6x=32\)
\(\Leftrightarrow x=-\frac{16}{3}\)
b)\(\frac{2x-1}{3x+5}=-\frac{2}{3}\)
\(\Leftrightarrow3\left(2x-1\right)=-2\left(3x+5\right)\)
\(\Leftrightarrow6x-3=-6x-10\)
\(\Leftrightarrow12x=-7\)
\(\Leftrightarrow x=-\frac{7}{12}\)
c)\(\frac{x+1}{4}=\frac{9}{x+1}\Leftrightarrow\left(x+1\right)^2=36\)
\(\Leftrightarrow\left(x+1\right)^2=6^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=6\\x+1=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-7\end{cases}}}\)
d)\(\frac{6x-1}{2x+3}=\frac{3x}{x+2}\)
\(\Leftrightarrow\left(6x-1\right)\left(x+2\right)=3x\left(2x+3\right)\)
\(\Leftrightarrow6x^2+12x-x-2=6x^2+9x\)
\(\Leftrightarrow2x=2\Leftrightarrow x=1\)
\(\Leftrightarrow\frac{5\left(x+5\right)-3\left(x-3\right)}{15}=\frac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
\(\Leftrightarrow\frac{2x+34}{15}=\frac{2x+34}{x^2+2x-15}\Leftrightarrow\orbr{\begin{cases}2x+34=0\\x^2+2x-15=15\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-17\\x^2+2x-30=0\end{cases}}\)
Từ đó tìm được \(S=\left\{-17;\sqrt{31}-1;-\sqrt{31}-1\right\}\)
ta có: f(x) + g(x) = ( 7 x^6 - 6x ^5 +5x^4 -4x^3 +3x^2 -2x +1) - ( x - 2x^2 +3x^3 - 4x^4 + 5x^5 - 6x^6)
\(=7x^6-6x^5+5x^4-4x^3+3x^2-2x+1-x+2x^2-3x^3+4x^4-5x^5+6x^6\)
\(=\left(7x^6+6x^6\right)-\left(6x^5+5x^5\right)+\left(5x^4+4x^4\right)-\left(4x^3+3x^3\right)+\left(3x^2+2x^2\right)-\left(2x+x\right)+1\)
\(=13x^6-11x^5+9x^4-7x^3+5x^2-3x+1\)
Chúc bn học tốt !!!!!!
Uhhhhhhhhhhhhhhhhhhhhhhhhhh😥😥😥😥😥😥😥😥😥😥😥????????????...............
\(ĐK:x\ne\pm1\)
\(PT\Leftrightarrow\frac{3x+2}{\left(x-1\right)^2}-\frac{6}{\left(x+1\right)\left(x-1\right)}-\frac{3x-2}{\left(x+1\right)^2}\)
Bạn tự quy đồng rồi rút gọn nhé!!