Cho hàm số y = f(x) = 1/2x.
chứng tỏ rằng x1 > x2 thì f(x1) > f(x2)
cảm ơn vì đã giải nha :) :)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ta có \(f\left(10x\right)=k.10x=10.kx=10f\left(x\right)\)
b. \(f\left(x_1+x_2\right)=k\left(x_1+x_2\right)=kx_1+kx_2=f\left(x_1\right)+f\left(x_2\right)\)
c.\(f\left(x_1-x_2\right)=k\left(x_1-x_2\right)=kx_1-kx_2=f\left(x_1\right)-f\left(x_2\right)\)
Cho x các giá trị bất kì x 1 , x 2 sao cho x 1 < x 2
= > x 1 - x 2 < 0
Ta có:
f x 1 = 3 x 1 ; f x 2 = 3 x 2 ⇒ f x 1 − f x 2 = 3 x 1 − 3 x 2 = 3 x 1 − x 2 < 0 ⇒ f x 1 < f x 2
Vậy với x 1 < x 2 ta được f ( x 1 ) < f ( x 2 ) nên hàm số y = 3x đồng biến trên tập hợp số thực R.
Ta co: y = 1/2 x
khi x1 > x2 thi suy ra:
1/2.x1 > 1/2 . x2 (dpcm)