K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2017

a, Ta phải chứng minh  ƯCLN(2n+1 ; 2n+3)=1

đặt : ƯCLN(2n+1;2n+3)=d

Suy ra : 2n+1 chia hết cho d 

           2n+3 chia hết cho d

Nên (2n+3) - (2n+1) chia hết cho d Hay 2 chia hết cho d 

 => d thuộc Ư(2)={1;2}

loại d=2 (vì d khác 2)

=> d = 1

Vậy 2 số tự nhiên lẻ liên tiếp nhau là 2 số nguyên tố cùng nhau

b, Gọi ƯCLN ( 2n+5 ; 3n+7)=p

Suy ra : 2n+5 chia hết cho p Hay 3.(2n+5)=6n+15 chia hết cho p

       3n+7 chia hết cho p Hay 2.(3n+7)=6n+14 chia hết cho p

Nên : (6n+15) - (6n+14) chia hết cho p hay 1chia hết cho p

=>p= 1 

vậỷ 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

20 tháng 11 2015

a)Giải: Gọi hai số lẻ liên tiếp là 2n + 1 và 2n + 3 (n \(\in\) N).

Ta đặt ƯCLN (2n + 1, 2n + 3) = d.
Suy ra 2n + 1chia hết cho d; 2n + 3 chia hết cho d.

Vậy (2n + 3) – ( 2n + 1) chia hết cho d

Hay 2 chia hết cho d, suy ra d \(\in\) { 1 ; 2 }. Nhưng d \(\ne\) 2 vì d là ước của các số lẻ. Vậy d = 1, điều đó chứng tỏ 2n + 1 và 2n + 3 là hai số nguyên tố cùng nhau. 

20 tháng 11 2015

dài quá bn tick mình mới làm

6 tháng 8 2021

b, Gọi ƯCLN(2n+5;3n+7) = d ( \(d\in N\)*)

Ta có : 2n + 5 \(⋮\)d => 6n + 15 \(⋮\)d (1)

3n + 7 \(⋮\)d => 6n + 14 \(⋮\)d (2) 

Lấy (1) - (2) ta được : \(6n+15-6n-14⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy ta có đpcm 

7 tháng 11 2015

a) 2 số có dạng: 2k +1 ; 2k + 3

UC(2k + 1 ; 2k + 3) = UC(1;3) = 1

=> dpcm

b) Gọi UCLN(2n + 5 ;3n + 7) = d

2n +  5 chia hết cho d 

=> 6n + 15 chia hết cho d

3n + 7 chia hết cho d

=> 6n + 14 chia hết cho d

Mà UCLN(6n + 14 ; 6n + 15) = 1 <=> d = 1

=> DPCM

4 tháng 8 2019

Gọi 2 số lẻ liên tiếp đó là : \(n;n+2(n\inℕ^∗;n⋮̸2)\)

Gọi d là ƯCLN ( n ; n + 2 ) 

\(\Rightarrow n⋮d;n+2⋮d\)

\(\Rightarrow\left(n+2\right)-n=2⋮d\)

\(\Rightarrow d\inƯ\left(2\right)=\left\{1;2\right\}\)

Vì d là ước của 1 số lẻ nên d khác 2 

\(\Rightarrow d=1\)

Do đó 2 số lẻ liên tiếp nguyên tố cùng nhau.

4 tháng 8 2019

\(2n+5⋮d;3n+7⋮d\)

\(\Rightarrow3\left(2n+5\right)⋮d;2\left(3n+7\right)⋮d\)

\(\Rightarrow6n+15⋮d;6n+14⋮d\)

\(\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)

\(\Rightarrow\left(6n-6n\right)+\left(15-14\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow\)

23 tháng 7 2016

a)Gọi 2 số tự nhiên liên tiếp là a;a+1

=>a+1-a  chia hết cho WCLN của a;a+1

=1 mà ước của 1 là 1 nên ước chung lớn nhất của a;a+1 là 1.

Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.

b)Gọi 2 số lẻ liên tiếp là a;a+2.

Làm như trên:

Hiệu:a+2-a=2

Vậy ước chung lớn nhất của a;a+2 là 1 hoặc 2.

Mà số lẻ ko chia hết cho 2 nên ước chung lớn nhất của a;a+2 là 1.

Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.

c)Gọi WCLN(2n+1;3n+1)=d.

2n+1 chia hết cho d=>6n+3 chia hết cho d.

3n+1 ------------------=>6n+2 chia hết cho d.

Hiệu chia hết cho d,hiệu =1=>...

Vậy là số nguyên tố cùng nhau.

Chúc em học tốt^^