K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2019

Đề sai.Thử với \(x=y=\frac{1}{2}\) thì đề đúng ko ??

Chắc đề đúng là bài 4 của đề tuyển sinh vào 10 chuyên Hồ Chí Minh 2015-2016

Còn nếu cần ngay bây giờ thì ib e lm cho.

12 tháng 12 2019

cho mk xin link đề đc ko bn

2 tháng 1 2021

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

28 tháng 12 2021

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\le\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}+\frac{9}{4}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\le\left(x+y+z\right)\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}\right)+\frac{9}{4}\)

\(\Leftrightarrow\frac{z}{x+y}+\frac{x}{y+z}+\frac{y}{z+x}\le\frac{y+z}{4x}+\frac{z+x}{4y}+\frac{x+y}{4z}\)

Ta có:

\(VP=\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}\right)\)

\(\ge\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=VT\)

20 tháng 12 2020

bỏ chữ x đầu nhá mình ghi nhầm :>

7 tháng 3 2020

Với \(0\le x;y\le1\) ta có:

\(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\ge\frac{x}{\sqrt{1+3}}+\frac{y}{\sqrt{1+3}}=\frac{x+y}{2}\)

Dấu "=" xảy ra <=> x = y = 1

Có: \(0\le x;y\le1\)

=> \(0\le x^2\le x\le1;0\le y^2\le y\le1\)

\(\left(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\right)^2\le2\left(\frac{x^2}{y+3}+\frac{y^2}{x+3}\right)\le2\left(\frac{x}{x+y+2}+\frac{y}{x+y+2}\right)\)

\(=2\left(\frac{x+y+2}{x+y+2}-\frac{2}{x+y+2}\right)\le2\left(1-\frac{2}{1+1+2}\right)=1\)

=> \(\sqrt{\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}}\le1\)

Dấu "=" xảy ra x<=>  = y =1

NV
9 tháng 3 2020

\(VT=\sum\frac{x}{x\left(x+y+z\right)+yz}=\sum\frac{x}{\left(x+y\right)\left(x+z\right)}=\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(VT=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(VT=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y+z\right)\left(xy+yz+zx\right)-xyz}=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)+\frac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)-xyz}\)

\(VT\le\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)+\frac{1}{9}3\sqrt[3]{xyz}.3\sqrt[3]{x^2y^2z^2}-xyz}\)

\(VT\le\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)+xyz-xyz}=\frac{9}{4}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)